+
Způsob ověření
Uživatelské jméno
Heslo
  Vytvořit účet Zapomenuté heslo

NEBO
 
Omezit pro: 
červenec 2021
Co nového přinesla verze programu ENERGETIKA 6.0.6 ?
29. 7. 2021 | Autor: Ing. Martin Varga
Verze programu ENERGETIKA 6.0.6. přinesla již avizované funkce a něco navíc. Zde si je podrobněji uvedeme.
květen 2021
Nastavení importu gbXML
26. 5. 2021 | Autor: Ing. Jan Stašek
Tento článek shrnuje možnosti nastavení importu gbXML souboru do programu Energetika.
březen 2021
Propojení Energetiky a 3D modelu v programu DesignBuilder - FAQ
19. 3. 2021 | Autor: Ing. Jan Stašek
Tento článek shrnuje nejčastější dotazy k vytváření 3D modelu pro program Energetika prostřednictvím programu DesignBuilder. Poslední aktualizace: 16.5.2021.
únor 2021
Rozdíly při stanovení požadavku na součinitel prostupu tepla mezi programy Energetika a Tepelná technika 1D
24. 2. 2021 | Autor: Ing. Jan Stašek, Ing. Martin Varga
Při komplexním posouzení budovy se můžete setkat se situací, kdy dochází k rozdílu mezi požadovanou hodnotou uváděnou v programu Energetika a Tepelná technika 1D. Zjednodušeně lze říci, že v programu Energetika se uplatňují pouze energetické požadavky doplněné o logické limity. Program Tepelná technika 1D stanovuje požadavky přesně dle normy ČSN 73 0540-2. V tomto článku si podrobněji vysvětlíme jednotlivé rozdíly.
říjen 2020
Strop k půdě - jaké jsou možnosti zadání? Jaké je jeho zastínění Fsh,O?
19. 10. 2020 | Autor: Ing. Martin Varga
Na technické podpoře se množí dotazy, jaké zadat zastínění Fsh,O stropu k půdě pro výpočet solárních zisků, když nad ním je ještě střecha. V článku si vysvětlíme okolnosti, které k takovému dotazu vedou a co s "tím"....nejprve si ale zrekapitulujeme možnosti, jakým způsobem lze nevytápěný prostor půdy postihnout v zadání.
duben 2018
Konstrukce přilehlé k zemině - zadání dle ČSN EN ISO 13 370 (1. část)
3. 4. 2018 | Autor: Ing. Martin Varga
V tomto článku obecně popíšeme výpočetní případy dle ČSN EN ISO 13 370 pro konstrukce přilehlé k zemině a princip výpočtu tepelných ztrát, který je odlišný od v minulosti běžně stanovovaných tepelných ztrát pomocí zadání odhadované teploty přilehlé zeminy.
září 2016
Strop k nevytápěnému prostoru pod střechou - stanovení požadavku a volba výpočtu
6. 9. 2016 | Autor: Ing. Tomáš Kupsa
V roce 2016 začaly probíhat poměrně intenzivní kontroly energetických dokumentů Státní energetickou inspekcí (SEI). Energetičtí specialisté se na nás obrací na konzultaci připomínek SEI. V tomto článku zmiňuji jednu z připomínek, která se týká zadávání stropních konstrukcí pod nevytápěným prostorem. Původní článek z dubna 2016 byl revidován - byl zpřesněn přístup k půdám bez tepelné izolace.
květen 2016
Problematika stanovení Uem u vícezónových budov (podněty k vyhlášce o ENB č. 78 /2013 část 1)
3. 5. 2016 | Autor: Ing. Martin Varga
Zásady výpočtu průměrného součinitele prostupu tepla obálkou budovy (Uem) stanovuje norma ČSN 73 0540-2. Výpočetní postup dle této normy je určen pro výpočet budovy jako celku nebo výpočet jedné konkrétní zóny. Nestanovuje zásady výpočtu Uem pro vícezónové budovy, ani popis, jak započítat vnitřní dělící konstrukce. Parametr Uem byl vyhláškou 78/2013 Sb. zaveden jako jedno z dílčích kritérií hodnocení energetické náročnosti. Do vyhlášky 78/2013 Sb. byl převzat normový výpočetní postup a pro stanovení celkového Uem pro vícezónové budovy bylo zavedeno průměrování Uem jednotlivých zón přes objemy vzduchu. Pravidla pro započítávání vnitřních konstrukcí oddělujících zóny vytápěné na různou teplotu samotná vyhláška nestanovuje. Určité vodítko pro započítávání těchto konstrukcí dává zákon 406/2000 Sb. v definici obálky budovy. Tímto článkem chceme popsat úskalí výpočetních postupů Uem pro vícezónové budovy a navrhnout možné úpravy připravované novely vyhlášky 78/2013 Sb.

Co je průměrný součinitel prostupu tepla - Uem [W/m2K]

Tento údaj představuje průměrnou hodnotu měrné tepelné ztráty prostupem tepla skrz obálku budovy nebo zóny tj. vztaženou na 1m2 obalové plochy budovy nebo zóny při rozdílu teplot 1°C, resp. 1 K. Při přenásobení Uem příslušným rozdílem teplot ∆θie [°C] (interiér - exteriér) a plochou obálky budovy nebo zóny A [m2] získáme tepelnou ztrátu prostupem tepla Q [W] pro daný teplotní rozdíl pro budovu nebo zónu.

Pro vícezónové budovy platí toto pravidlo pro stanovení Uem celé budovy:

Jedná se o průměrování Uem jednotlivých zón přes objemy jednotlivých zón.

Co patří do obálky budovy

Obálka budovy nebo zóny je v čl. 3.1 normy  ČSN 73 0540-2 definována jako Soubor všech teplosměnných konstrukcí na systémové hranici celé  budovy nebo zóny, které jsou vystaveny přilehlému prostředí, jež tvoří venkovní vzduch, přilehlá zemina, vnitřní vzduch v přilehlém nevytápěném prostoru, sousední nevytápěné budově nebo sousední zóně budovy vytápěné na nižší vnitřní návrhovou teplotu. (stejná definice je i opsána v zákoně 406/2000 Sb. o hospodaření energií v aktuálním znění v §2 odstavci (1) pod pímenem t ).

Nutno dodat, že systémová hranice je plocha ohraničující prostor, pro který má být proveden výpočet, resp. sestavena bilance, tedy budova nebo zóna.

Výše uvedená definice obálky budovy se zdá na první pohled poměrně jasná. Při podrobnějším pohledu ale může být tato definice dost problematická pro zahrnování konstrukcí oddělujících dvě zóny vytápěné na různou teplotu. Podle této definice bychom měli do obálky budovy/zóny započítat oddělující konstrukci jen při stanovování Uem zóny vytápěné na vyšší teplotu. Při stanovování Uem zóny vytápěné na nižší teplotu bychom tuto konstrukci měli ignorovat. Pro stanovení celkového Uem se nic zvláštního neděje, ale pokud chceme s Uem dále pracovat při výpočtu potřeby tepla na vytápění, což při výpočtech energetické náročnosti pro účely PENB děláme, nastává problém. Ve výpočtovém modelu máme zahrnut tepelný tok z jedné zóny do druhé, ale ve druhé se tento tepelný tok neprojevuje jako tepelný zisk. Toto nám uměle zvyšuje potřebu na vytápění u zóny vytápěné na nižší teplotu a celkový výpočtový model je nekonzistentní. Pro zachování konzistence výpočtu Uem zóny s výpočtem potřeby tepla na vytápění zóny, je logičtější započítávat vnitřní konstrukci při výpočtu Uem u obou zón.

Pro názornou ukázku vlivu uvažování vnitřních konstrukcí na Uem, tepelné ztráty nebo potřebu tepla, budeme nadále v článku pracovat se všemi možnými variantami zahrnutí vnitřních dělícíh konstrukcí mezi zónami do výpočtu:

VARIANTA 1 - konstrukci oddělující dvě na různé teploty vytápěné zóny zahrnujeme do výpočtu Uem u obou zón

VARIANTA 2 - konstrukci oddělující dvě na různé teploty vytápěné zóny zahrnujeme pouze do výpočtu Uem zóny vytápěné na vyšší teplotu. U zóny vytápěné na nižší teplotu konstrukci ignorujeme.

VARIANTA 3 - konstrukci oddělující dvě na různé teploty vytápěné zóny nezahrnujeme do výpočtu Uem ani u jedné ze zón

Vzorový dům

Pro účely článku zvolíme dvouzónový model představující klasický bytový dům se schodištěm uvnitř hlavní hmoty objektu. Návrhová teplota obytné částy (byty) 20°C, návrhová teplota schodiště např. 16°C (zóna schodiště je cíleně vytápěna na tuto teplotu regulovatelnými otopnými prvky umístěnými v této zóně). Z1 = obytná část, Z2=schodiště.

Výpočty Uem pro jednotlivé varianty (dle platné vyhlášky)

Poznámky k výpočtům:

  • pro jednoduchost byly vypuštěny přirážky na tepelné vazby (což v regulérním výpočtu samozřejmě  nelze)
  • redukční činitel "b" pro podlahu na terénu byl stanoven dle ČSN EN ISO 13 370 (pro tl.  obvodové stěny 0,3 m a bez okrajových tepelných izolací)
  • plochy výplní byly paušálně uvažovány, že tvoří 40% z celkové obvodové plochy obálky dané zóny



Komentář ke způsobu zahrnutí teplosměnných ploch výpočtu podle VARIANTY 1):

  • Průměrné součinitele prostupu tepla jednotlivých zón Uem JSOU STANOVENY SPRÁVNĚ => výpočet udává správný přehled o tepelných tocích mezi zónami v budově = > hodnota Uem je použitelná pro výpočet tepelných ztrát,  resp.potřeby tepla na vytápění obou zón (tj. zóny s vyšší i nižší teplotou)
Poznámka 1: Záporná hodnota Uem u zóny Z2 indikuje, že tepelný zisk prostupem tepla ze Z1 do Z2 je vyšší, než tepelné ztráty prostupem ze Z2 do exteriéru. Pokud by bylo hypoteticky větrání v Z2 nulové, znamenalo by to, že prostor nebude nutné ani vytápět.

Poznámka 2: Protože každá zóna má jiný teplotný rozdíl ∆θie [°C], je i pro dělící konstrukci mezi zónami Z1-Z2 uveden jiný činitel teplotní redukce "b" (0,11 vs. -0,13). Toto není ideální pro jednoduchou vizuální kontrolu. Nicméně po přenásobení měrné tepelné ztráty příslušným teplotním rozdílem  příslušné zóny zjistíme, že se tyto hodnoty rovnají. Mají  pouze opačná znaménka, protože v zóně s vyšší teplotou je to "tepelná ztráta" a u zóny s nižší teplotou je to tepelný "zisk".



Komentář ke způsobu zahrnutí teplosměnných ploch výpočtu podle VARIANTY 2):

  • Průměrný součinitel prostupu tepla Uem JE STANOVEN SPRÁVNĚ JEN U Z1 (zóna s vyšší teplotou), zatímco u Z2 (zóna s nižší teplotou) NENÍ STANOVEN SPRÁVNĚ => výpočet neudává správný přehled o tepelných tocích mezi zónami v budově = > hodnota Uem je použitelná pro výpočet tepelných ztrát,  resp.potřeby tepla na vytápění jen u zóny Z1 (tj. zóny s vyšší teplotou). U zóny Z2 nikoliv. Pokud hodnotu Uem použijeme u Z2 pro výpočet tepelných ztrát, resp. potřeby tepla na vytápění, dojde k navýšení potřeby tepla, protože není odečten tepelný zisk prostupem ze zóny Z1.

Poznámka 1: Dalo by se řící, že výše uvedené normové definici teplosměnných konstrukcí nejvíce odpovídá způsob zadání vnitřních dělících teplosměnných konstrukcí dle VARIANTY 2. Jenže tento způsob výpočtu není "ani ryba, ani rak". Nejsou zde správně zahrnuty tepelné toky mezi jednotlivými zónami. Navíc je chybně stanoven i tepelný tok za celou budovu, protože zatímco na jedné straně je tok pro Z1 tj. mezi Z1 a Z2 započítán (z vyšší teploty na nižší teplotu), na druhé straně pro Z2 ten samý tok, ale opačnou hodnotou samozřejmě,  mezi Z2-Z1 započítán není ! Z prosté logiky, pokud u Z1 k Z2  máme "tepelnou ztrátu", hledali bychom u Z2 k Z1 "tepelný zisk". Jenže u dělící konstrukce Z2-Z1 je 0 W/m2K.



Komentář ke způsobu zahrnutí teplosměnných ploch výpočtu podle VARIANTY 3):

  • Průměrné součinitele prostupu tepla jednotlivých zón Uem NEJSOU STANOVENY SPRÁVNĚ => výpočet neudává správný přehled o tepelných tocích mezi zónami v budově = > hodnota Uem není použitelná pro výpočet tepelných ztrát,  resp.potřeby tepla na vytápění obou zón (tj. zóny s vyšší i nižší teplotou)

Poznámka 1: Průměrné Uem za celou budovu, by bylo stanoveno správně (protože vnitřní tepelné toky mezi zónami se vzájemně  vyruší, a proto pro stanovení průměrného  Uem za celou budovu jejich zahrnutí nebo nezahrnutí do výpočtu nemá  vliv), kdyby nebylo dvou aspektů, které jsou popsány níže.


Hodnocení výpočtu Uem (dle platné vyhlášky)


Komentář ke způsob výpočtu při průměrování Uem pro celou budovu podle objemu zón:

  • Průměrný součinitel prostupu tepla se vztahuje k obálce budovy nebo zóny nikoliv k objemu. Protože není jednotný poměr mezi A/V pro různé proporce zón, není ani správné průměrný součinitel prostupu tepla Uem pro celou budovu průměrovat podle objemu zón. Zóna, která má A/V vyšší (plocha obálky k obestavěnému objemu), tak má při tomto způsobu průměrování nižší vliv na výsledný průměrný součinitel prostupu tepla celé budovy Uem, než by měla mít a naopak.
  • I kdyby způsob zprůměrování Uem pro celou budovu byl zvolen správně, tak při takto zprůměrovaném Uem (podle  objemů zón) pro celkovou budovu neumíme z této výsledné hodnoty zjistit tepelnou ztrátu Q [W] celé budovy, protože nevíme, jakým rozdílem teplot ∆θie [°C] tuto hodnotu přenásobit. Dílčí hodnoty Uem pro jednotlivé zóny byly stanoveny pro jiný teplotný rozdíl pro každou zónu (v tomto případě ∆θie,Z1 = 35°C a ∆θie,Z2 = 31°C),  tzn. že v obou případech zón konstrukce k exteriéru mají redukční činitel měrných tepelných ztrát b=1,00

Návrh řešení

  • Prvním  předpokladem správného zprůměrování dílčích Uem za jednotlivé zóny (u vícezónových budov) je vztahovat výpočet vždy k jednomu teplotnímu rozdílu ∆θie [°C].  Např. podle zóny s nejvyšší návrhovou teplotou v hodnocené budově  => pak lze i z průměrného Uem za celou budovu (zprůměrované podle obálek A - viz níže) získat tepelné ztráty Q [W] pro budovu jako celek. Při tomto postupu i redukční činitele "b" budou mít pro dělící konstrukce mezi zónami shodnou hodnotu jen s opačným znaménkem (lepší vizuální kontrola). Tzn. v tomto případě budou shodné již měrné tepelné toky a nikoliv až tepelné ztráty.

v děliteli použít vždy jednotný teplotní rozdíl pro všechny zóny v celé budově: (θi - θe) = ∆θie = jednotný teplotní rozdíl pro hodnocenou budovu


  • Druhým předpokladem, navazujícím na první, je průměrovat dílčí Uem pro stanovení Uem pro celou budovu podle ploch obálek jednotlivých zón A [m2].  Protože, jak již bylo zmíněno v komentáři výše, Uem je parametr, který udává vlastnosti obálky budovy nebo zóny, nikoliv vlastnosti objemu vzduchu budovy nebo zón.


Výpočty Uem pro jednotlivé varianty (dle navrženého řešení)

Poznámky k výpočtům:

  • pro jednoduchost byly vypuštěny přirážky na tepelné vazby (což v regulérním výpočtu samozřejmě  nelze)
  • redukční činitel "b" pro podlahu na terénu byl stanoven dle ČSN EN ISO 13 370 (pro tl.  obvodové stěny 0,3 m a bez okrajových tepelných izolací)
  • plochy výplní byly paušálně uvažovány, že tvoří 40% z celkové obvodové plochy obálky dané zóny


Komentář ke způsobu zahrnutí teplosměnných ploch výpočtu podle VARIANTY 1):

  • Průměrné součinitele prostupu tepla jednotlivých zón Uem JSOU STANOVENY SPRÁVNĚ => výpočet udává správný přehled o tepelných tocích mezi zónami v budově = > hodnota Uem je použitelná pro výpočet tepelných ztrát,  resp.potřeby tepla na vytápění obou zón (tj. zóny s vyšší i nižší teplotou)
Poznámka 1: Záporná hodnota Uem u zóny Z2 indikuje, že tepelný zisk prostupem tepla ze Z1 do Z2 je vyšší, než tepelné ztráty prostupem ze Z2 do exteriéru. Pokud by bylo hypoteticky větrání v Z2 nulové, znamenalo by to, že prostor nebude nutné ani vytápět.

Poznámka 2: Měrné tepelné ztráty obou zón jsou vztaženy k jednotmu teplotnímu rozdílu ∆θie [°C]. To má za následek i jednoduchou vizuální  kontrolu redukce měrných tepelných ztrát "b" (0,11 vs. -0,11) pro dělící konstrukci mezi zónami Z1-Z2. Stejně tak to platí i o činiteli "b" u ostatních konstrukcí, jak "si stojí" oproti tomuto jednotnému teplotními rozdílu ∆θie [°C].

Poznámka 3: Průměrný součinitel prostupu tepla Uem lze použít pro výpočet tepelných ztrát Q [W] celé budovy, protože známe jednotný teplotní rozdíl ∆θie [°C], kterým Uem přenásobíme, a  protože byl stanoven zprůměrováním podle ploch obálek jednotlivých zón.


Komentář ke způsobu zahrnutí teplosměnných ploch výpočtu podle VARIANTY 2):

  • Průměrný součinitel prostupu tepla Uem JE STANOVEN SPRÁVNĚ JEN U Z1 (zóna s vyšší teplotou), zatímco u Z2 (zóna s nižší teplotou) NENÍ STANOVEN SPRÁVNĚ => výpočet neudává správný přehled o tepelných tocích mezi zónami v budově = > hodnota Uem je použitelná pro výpočet tepelných ztrát,  resp.potřeby tepla na vytápění jen u zóny Z1 (tj. zóny s vyšší teplotou). U zóny Z2 nikoliv. Pokud hodnotu Uem použijeme u Z2 pro výpočet tepelných ztrát, resp. potřeby tepla na vytápění, dojde k navýšení potřeby tepla, protože není odečten tepelný zisk prostupem ze zóny Z1.

Poznámka 1: Dalo by se řící, že výše uvedené normové definici teplosměnných konstrukcí nejvíce odpovídá způsob zadání vnitřních dělících teplosměnných konstrukcí dle VARIANTY 2. Jenže tento způsob výpočtu není "ani ryba, ani rak". Nejsou zde správně zahrnuty tepelné toky mezi jednotlivými zónami. Navíc je chybně stanoven i tepelný tok za celou budovu, protože zatímco na jedné straně je tok pro Z1 tj. mezi Z1 a Z2 započítán (z vyšší teploty na nižší teplotu), na druhé straně pro Z2 ten samý tok, ale opačnou hodnotou samozřejmě,  mezi Z2-Z1 započítán není ! Z prosté logiky, pokud u Z1 k Z2  máme "tepelnou ztrátu", hledali bychom u Z2 k Z1 "tepelný zisk". Jenže u dělící konstrukce Z2-Z1 je 0 W/m2K.


Komentář ke způsobu zahrnutí teplosměnných ploch výpočtu podle VARIANTY 3):

  • Průměrné součinitele prostupu tepla jednotlivých zón Uem NEJSOU STANOVENY SPRÁVNĚ => výpočet neudává správný přehled o tepelných tocích mezi zónami v budově = > hodnota Uem není použitelná pro výpočet tepelných ztrát,  resp.potřeby tepla na vytápění obou zón (tj. zóny s vyšší i nižší teplotou)

Poznámka 1: Průměrný součinitel prostupu tepla Uem celé budovy lze použít pro výpočet tepelných ztrát Q [W] celé budovy (vnitřní tepelné toky mezi zónami se vzájemně  vyruší, a proto pro stanovení průměrného  Uem za celou budovu jejich zahrnutí nebo nezahrnutí do výpočtu nemá  vliv), protože známe jednotný teplotní rozdíl ∆θie [°C], kterým Uem přenásobíme, a protože byl stanoven zprůměrováním podle ploch obálek jednotlivých zón.

Hodnocení výsledků výpočtu (dle navrženého řešení)

Komentář ke způsob výpočtu při průměrování Uem pro celou budovu podle ploch obálek zón:

  • Navržený způsob použití jednotného teplotního rozdílu ∆θie pro stanovení měrných tepelných toků prostupem tepla je základním předpokladem pro správné stanovení Uem za celou budovu zprůměrováním dílčích Uem zón podle ploch obálek zón. Po těchto úpravách je i hodnota Uem pro celou budovu konzistentní s tepelnou ztrátou budovy, protože ji lze z celkové hodnoty Uem za celou budovu jednoduše stanovit.


Závěr

  • Má-li být výpočet potřeby tepla na vytápění u jednotlivých zón konzistentní s hodnotou Uem, je nutno přihlédnout ke specifikům výpočtu vícezónových budov a zejména z tohoto hlediska upravit definici obálky budovy nebo zóny pro výpočet Uem. (Do výpočtu zahrnout kladné i záporné tepelné toky mezi zónami)
  • Má-li být výpočet průměrného součinitele prostupu tepla Uem za celou budovu správný, musí být stanovení měrných tepelných toků pro všechny zóny vztaženo k jednotmu teplotnímu rozdílu ∆θie a musí být průměrován podle ploch obálek jednotlivých zón, nikoliv podle objemů zón.


prosinec 2015
Možnosti zadání součinitele prostupu tepla do aplikace ENERGETIKA
7. 12. 2015 | Autor: Ing. Jan Stašek
Tento příspěvek shrnuje možnosti zadání součinitele prostupu tepla stavebních konstrukcí a výplní otvorů do apliakce ENERGETIKA.
prosinec 2014
Rozdíly v hodnocení (klasifikaci) Uem v protokolu EŠOB a v protokolu PENB
9. 12. 2014 | Autor: Ing. Martin Varga
Rozdíly v hodnocení (klasifikaci) Uem v protokolu EŠOB a v protokolu PENB
listopad 2014
Zobrazování referenčních hodnot v protokolu PENB
3. 11. 2014 | Autor: Ing. Martin Varga
Častý dotaz uživatelů softwaru ENERGETIKA je k protokolu PENB, kde se nezobrazují referenční hodnoty např. pro jednotlivé stavební konstrukce nebo i pro zdroje tepla, chladu. (Aktualizace 2017-11-09)
říjen 2014
Konstrukce přilehlé k zemině - zadání dle ČSN EN ISO 13 370 (2. část)
22. 10. 2014 | Autor: Ing. Martin Varga
Správné zadání konstrukcí přilehlý k zemině pro výpočet tepelných ztrát dle ČSN EN ISO 13 370. Identifikace chyby v zadání těchto konstrukcí při velmi vysoké spotřebě energie na vytápění po výpočtu (aktualizace 2018-04-03)
červen 2014
Odečet ploch a objemů ve 3D
11. 6. 2014 | Autor: Ing. Jan Stašek
Tento příspěvek ukazuje možnosti odečtu ploch a objemů pomocí programu SketchUp. Příspěvek je doplněn manuálem a videoukázkou.
květen 2014
Jaký je rozdíl mezi ΔUem v Energetice a ΔU v Tepelné technice 1D?
19. 5. 2014 | Autor: Ing. Martin Varga
Ve výpočtech se samostatně zohledňují přirážky na tepelné mosty a tepelné vazby. Kdy a jak zohlednit jednotlivé případy popisuje tento příspěvek.
duben 2014
Zadání konstrukcí v ENERGETICE pomocí jednotlivých vrstev materiálů
28. 4. 2014 | Autor: Ing. Jan Stašek
Konstrukce pro potřeby aplikace ENERGETIKA je možno detailně zadat v aplikaci Tepelná technika 1D, která je pro stanovení součinitele prostupu tepla zcela ZDARMA včetně podrobných pomocných výpočtů dle ČSN EN ISO 6946 a ČSN 73 0540-4.