Omezit pro: 
leden 2024
Jaká jsou úskalí při užití (nejen) vlastních klimadat z hlediska solárních tepelných zisků?
30. 1. 2024 | Autor: Ing. Martin Varga
V tomto článku upozorníme na některé souvislosti hodinového výpočtu v programu ENERGETIKA při výpočtu solárních tepelných zisků. A doporučíme co dělat, pokud se po výpočtu v jejich průběhu objeví "anomálie" v podobě velmi vysoké hodinové hodnoty.
říjen 2023
Využití odpadního tepla z chlazení vnitřního prostředí ve výpočtu ENB
20. 10. 2023 | Autor: Ing. Martin Varga
Do programu byly doplněny funkce pro jednodušší postihnutí , resp. zadání zpětného využití odpadního tepla z chlazení upravovaného vnitřního prostředí (měsíční výpočty od verze 6.0.7, hodinové výpočty od verze 7.1.5). Aktualizace 20.10.2023
Typy tepelných zisků tvořících odpadní teplo z chlazení ve výpočtu ENB
20. 10. 2023 | Autor: Ing. Martin Varga
V článku jsou uvedeny případy, kdy lze využít ve výpočtu energetické náročnosti odpadního tepla z chlazení. A dále popsáno, jakým způsobem je toto možno zadat. (Aktualizace 13.10.2023)
leden 2022
ENERGETIKA 6.0.7 - nové tabulky a grafy spotřeby pro pomocné spotřebiče
14. 1. 2022 | Autor: Ing. Martin Varga
Do protokolu mezivýsledků byly doplněny nové tabulky a grafy. Rozšiřují přehled informací o hodnocené, ale i o referenčních budovách.
ENERGETIKA 6.0.7 - měsíční podíly pokrytí
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byly doplněny možnosti zadat podíly pokrytí potřeby tepla na vytápění, chladu na chlazení a potřeby tepla na přípravu teplé vody po měsících.
ENERGETIKA 6.0.7 - výpočet Uem,R pro chladírny a mrazírny
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byly doplněny funkce pro jednodušší postihnutí tohoto typu zóny (chladírna/mrazírna) z pohledu výpočtu referenčního Uem,R a referenčních spotřeb energií.
ENERGETIKA 6.0.7 - nové grafy využití OZE, CHLrc, KVTE el.
14. 1. 2022 | Autor: Ing. Martin Varga
Do protokolu mezivýsledků byly doplněny nové tabulky a grafy. Ty mají za úkol zvýšit přehled o využití OZE, odpadního tepla z chlazení a využití elektřiny z KVET v budově
březen 2021
Co nového přinesla verze programu ENERGETIKA 6.0.5 ?
29. 3. 2021 | Autor: Ing. Martin Varga
Verze programu ENERGETIKA 6.0.5. přinesla již avizované funkce a něco navíc. Zde si je podrobněji uvedeme.
Zadání vlastní hodnoty emisivity konstrukce pro výpočet "negativního" sálání
29. 3. 2021 | Autor: Ing. Martin Varga
Ve verzi programu 6.0.5 byla vystavena možnost zadání konkrétní hodnoty emisivity u každé vnější konstrukce (přilehlé k vnějšímu vzduchu). Výpočet dle EN ISO 52016-1 doposud uvažoval pouze paušálních hodnot emisivity resp. už výsledného součinitele přestupu dlouhovlnným sáláním mezi vnějším povrchem konstrukce a oblohou, a to především u nových výplní vede k navýšení potřeby tepla na vytápění. Toto je další možnost jak tuto potřebu snížit.
Vliv okrajových podmínek na vypočtenou hodnotu infiltrace EN ISO 52016-1
15. 3. 2021 | Autor: Ing. Martin Varga
Tento článek navazuje na již dříve uvedený (odkaz níže), týkající se vlivu voleb v zadání pro výpočet infiltrace na její výpočtovou výši dle EN ISO 52016-1, resp. prováděcí normu pro výpočet větrání EN 16 798-7. Nyní se podrobněji podíváme na jednu vstupní okrajovou podmínku výpočtu - referenční rychlost větru ve výšce 10 m nad zemí.
únor 2021
Proč je generována výpočtová potřeba tepla na vytápění i v letních měsících?
23. 2. 2021 | Autor: Ing. Martin Varga
Zřídka se na technické podpoře setkáme s upozorňujícím dotazem, že něco musí být špatně v programu, když je uváděna potřeba tepla i v letních měsících. Zvláště, když je obecně zafixováno pravidlo pro ukončení sezóny vytápění při vnější teplotě nad 13°C. V tomto článku vysvětlíme výpočetní princip stanovování potřeby tepla na vytápění a jaké příčinu mohou vést k tomu, že se tak děje. Aktualizace 16.3.2021.
leden 2021
Pohltivost povrchu u neprůsvitných konstrukcí pro solární záření
18. 1. 2021 | Autor: Ing. Martin Varga
Jedním z frekventovaných dotazů je i dotaz na to, jaká jsou pravidla pro označení nějakého povrchu neprůsvitné konstrukce za světlý, polotmavý nebo tmavý? Níže v článku se pokusíme o odpoveď.
prosinec 2020
Činitel typu regulace tepelného zdroje
3. 12. 2020 | Autor: Ing. Martin Varga
V ČSN 73 0331-1:2018 i 2020 je tabulka A.2 se standardními hodnotami pro činitel regulace tepelného zdroje. V tomto článku uvedeme, zda-li je nutné je používat ve výpočtu či nikoliv.
říjen 2020
Strop k půdě - jaké jsou možnosti zadání? Jaké je jeho zastínění Fsh,O?
19. 10. 2020 | Autor: Ing. Martin Varga
Na technické podpoře se množí dotazy, jaké zadat zastínění Fsh,O stropu k půdě pro výpočet solárních zisků, když nad ním je ještě střecha. V článku si vysvětlíme okolnosti, které k takovému dotazu vedou a co s "tím"....nejprve si ale zrekapitulujeme možnosti, jakým způsobem lze nevytápěný prostor půdy postihnout v zadání.
Představíme si to na příkladu obyčejného RD typu "bungalow:




ad 1) - podrobné modelování nevytápěného prostoru půdy

Na formuláři zadání ZÁKLADNÍ ÚDAJE zvolíme počet zón a nevytápěných prostorů 2. Z první "zóny" uděláme zónu tak, že k ní přiřadíme na formuláři zadání ZÁKLADNÍ POPIS ZÓNY vytápěný profil např. "1. RD - obytné místnosti". Z druhé "zóny" uděláme nevytápěný prostor tak, že k ní přiřadíme profil užívání "47. obecný nevytápěný prostor". Pro obě "zóny" pak musíme zadat všechny stavební konstrukce, objemy, plochy atd.



Podíváme-li se do profilu užívání č. "47- Obecný nevytápěný prostor" zjistíme, že přednastavená výměna vzduchu v nevytápěném prostoru je 0,33 1/h. U tohoto typu nevytápěné půdy se předpokládá výměna podstatně vyšší. Zadání vyšší hodnoty objemu větrání lze řešit třemi způsoby:

Zadání objemu větrání podstřešního prostoru nevytápěné půdy:

1A) volíme profil užívání nevytápěné půdy vlastní - č. 51, v něm jako výchozí volíme profil č. 47 a následně v modálním okně upravíme potřebnou hodnotu. Objem větrání dle profilu užívání se pak vždy přičte k objemu infiltrace na základě zadané hodnoty n50 a dalších parametrů pro výpočet infiltrace. Zadaná hodnota n50 by však již měla reflektovat to, že ten zvýšený objem větrání mezi půdou a exteriérem je zahrnut v této zvýšené hodnotě "požadavku" větrání zadané v profilu užívání. A tak pokud by se zadala hodnota n50=0, tak podstřešní prostor je v každém výpočetním kroku větrán přesně intenzitou výměny vzduchu 3,0 1/h (viz obrázek níže).


...

1B) profil užívání nevytápěné půdy vlastní - č. 47 neměníme. Reálně předpokládanou zvýšenou hodnotu větrání mezi podstřešním prostorem a půdou promítneme do hodnoty n50. Tu volíme tak, aby navýšila základní větraný objem požadavku dle profilu užívání na reálně předpokládanou hodnotu. Ve výsledku se objem větrání podstřešního prostoru bude rovnat vždy pro každý výpočetní krok objemu z profilu 0,33 1/h+ výše infiltrace na základně zadané hodnoty n50. (orientačně lze říci, že hodnota infiltrace na základě hodnoty n50 převedená na přirozený průměrný tlakový rozdíl je hodnota cca 20x nižší. Zadáte-li např. n50=10, tak hrubě je infiltrace 10/20=0,50. Čili výsledné větrání nevytápěného prostoru by bylo 0,33+0,50 = 0,83 1/h. Nutno však zdůraznit, že výpočet EN ISO 52016-1, resp. EN 16 798-7 tento výpočet infiltrace definuje podstatně podroněji.)

1C) volíme profil užívání nevytápěné půdy vlastní - č. 51, v něm jako výchozí volíme profil č. 47 a následně v modálním okně upravíme potřebou hodnotu. Objem větrání dle profilu užívání zadáme 0,0 1/h. Veškerý objem větrání pak připadne na infiltraci na základě zadané hodnoty n50 a dalších parametrů pro výpočet infiltrace. Při tomto způsobu zadání se zadává reálná hodnota n50, který by se zjistila, kdyby se tento prostor měřil např. blower-door testem. To je však teorie, takže i zde musíme tuto hodnotu odhadnout (reálně se pro výpočet těžko bude měřit).  Podstřešní prostor je v každém výpočetním kroku větrání intenzitou výměny dle výpočtu infiltrace.

Poznámka: V případě zadání 1C) bude kontrolou zadaný požadovaný objem větrání v prostoru nevytápěné půdy 0,0 1/h označen červeně (krajně neobvyklá hodnota), ale v tomto případě zadání to tak cíleně chceme a tudíž můžeme kontrolu "ignorovat".

Pokud shrneme tyto 3 způsoby zadání objemu větrání podstřešního prostoru, tak nejblíže realitě je postup ad 1C). Vycházíme-li z předpokladu, že v prostoru půdy nejsou umístěny žádné otevíratelné/uzavíratelné otvory určené pro zajištění "potřebného" objemu větrání. Objem větrání uvedený v profilu užívání má totiž vždy atribut požadavku, který musí být větrán vždy. Nad to se řeší nežádoucí infiltrace. Jelikož u prostoru půdy nelze reálně předpokládat požadavek na minimální objem větrání, veškerý objem výměny vzduchu se považuje za infiltraci v důsledku netěsností obálky půdy k exteriéru.

A konečně při tomto způsobu zadání nevytápěného prostoru půdy nesmíme zapomenout, že konstrukci stropu k půdě zadáme na záložce vnitřní konstrukce s požadavkem strop k půdě! V "zóně" 2, tedy nevytápěném prostoru musíme zadat plochy střešního pláště (také dle orientace ke světovým stranám).



ad 2) - zadání stropu k půdě jako k sousednímu prostoru (nevytápěnému) se zadanou teplotou v něm

Na formuláři zadání ZÁKLADNÍ ÚDAJE zvolíme počet zón a nevytápěných prostorů 1. Z první "zóny" uděláme zónu tak, že k ní přiřadíme na formuláři zadání ZÁKLADNÍ POPIS ZÓNY vytápění profil např. "1. RD - obytné místnosti".

Při tomto způsobu zadání nevytápěného prostoru půdy nesmíme zapomenout, že konstrukci stropu k půdě zadáme na záložce vnitřní konstrukce s požadavkem strop k půdě! A naopak plochu střešní konstrukce vůbec nezadáváme.



V profilech užívání sousedních prostorů je nabízen profil č. 49. Obecný nevytápěný prostor (přednastavená teplota 5°C). Zároveň u tohoto "nevytápěné profilu" sousedního prostoru je zde funkce, že je-li průměrná exteriérová teplota pro daný výpočetní krok vyšší než 5°C, uvažuje se v podstřešním prostoru průměrná exteriérová teplota. Jak je naznačeno v tabulce u profilu na obrázku výše. Takové omezení je samozřejmě žádoucí, pokud přímo zadavatel určuje teplotu v přilehlém nevytápěném prostoru. V opačném případě by to vedlo zcela jiště k celoroční potřebě tepla na vytápění.

Pokud by chtěl uživatel zadat odlišnou nejnižší teplotu, musí postupovat analogicky jako u zadání vlastního profilu užívání "zóny". Tj. zvolí zde profil č. 51 - definují vlastní profil. Jako výchozí zvolí profil č. 49 a následně může editovat nejnižší teplotu. Při editaci vlastního nevytápěného profilu může ponechat nebo zrušit i funkci (pomocí zatržíka) θu = MAX (θu ; θe).


...

Poznámka: tento typ prostoru je nevytápěný kontinuálně. Proto je začátek a konec provozní doby 0-24h a počet provozních dní 365/rok. Z toho důvodu si nemusíme všímat zadání teplot v mimoprovozní dobu a řešíme jen teploty v provozní dobu. Pokud zatržítko zatrhneme, použije se pro výpočet funkce okrajové podmínky teploty v nevytápěném prostoru θu = MAX (θu ; θe). Pokud nezatrhneme, uvažuje se teplota v nevytápěném prostoru θu (jelikož popisky modálního okna jsou obecné, tak θu = θint,H,set,I, popř. θu = θint,H,set,II). Teplotu θu je možné zadat i odlišnou po měsících v případě potřeby. Dokonce je možné pomocí tohoto zadání simulovat i to, že sousední prostor se jako nevytápěný chová jen v mimoprovozní dobu a v provozní dobu může být cíleně vytápěn na zadanou teplotu (pokud v kalendáři zadefinujeme provozní a mimoprovozní dobu).

Na formuláři zadání PLOCHY se při tomto způsobu zadání u plochy stropu k půdě neobjeví číslo "zóny" za konstrukcí (tj. že odděluje zónu 1 a nevytápěný prostor 2 a opačně), ale údaj "S" (tj. že konstrukce je přilehlá k sousednímu prostoru).



ad 3) - zadání stropu k půdě jako k sousednímu prostoru (nevytápěnému) se zadaným činitelem teplotní redukce "b" (plovoucí teplotní rozdíl)

Způsob zadání je v úvodu stejný, jako je popsán v předchozím bodě ad 2). Rozdíl je v tom, že při tomto způsobu zadání je nutno vždy volit profil užívání sousedního prostoru  č. 51 - definují vlastní profil. Jako výchozí zvolit profil č. 49. Při editaci v příslušné roletě zvolíme způsob zadání pomocí činitele teplotní redukce "b" a v následné roletě můžeme vybrat z některých typů předdefinovaných nevytápěných prostorů nebo můžete zadat činitel teplotní redukce vlastní:

...

Poznámka: přednastavení hodnoty činitele teplotní redukce "b" jsou převzaty z tabulky F.2 ČSN 73 0540-3: 2005.


Musíme zadat návrhové teploty na vytápění a chlazení v přilehlé vytápěné zóně k tomuto nevytápěnému prostoru. Poté se v modálním okně můžeme podívat k jakým teplotám v nevytápěné půdě vybraný činitel teplotní redukce "b" vede:


ad 4) - zadání stropu k půdě k exteriéru s požadavkem jako vnitřní konstrukci (strop k půdě)

Na formuláři zadání ZÁKLADNÍ ÚDAJE zvolíme počet zón a nevytápěných prostorů 1. Z první "zóny" uděláme zónu tak, že k ní přiřadíme na formuláři zadání ZÁKLADNÍ POPIS ZÓNY vytápění profil např. "1. RD - obytné místnosti".

Při tomto způsobu zadání nevytápěného prostoru půdy nesmíme zapomenout, že konstrukci stropu k půdě zadáme na záložce vnější konstrukce se zadefinovaným vlastním požadavkem na úrovni požadavku stropu k půdě! Ani zde plochu střešní konstrukce vůbec nezadáváme.

Poznámka: Tento způsob zadání je vlastně principiálně shodný se způsobem zadání ad 2) pokud bychom teplotu v nevytápěném prostoru zadali pro každý výpočetní krok shodnou s exteriérem, čili θu=θe. A je také principiálně shodný se způsobem zadání dle bodu ad 3), pokud bychom činitel teplotní redukce "b" zadali vlastní na úrovni b=1,00.


Při tomto modelu nám to v zadání poprvé výrazně "zaskřípe", protože v souvislosti s výpočtem EN ISO 52016-1 program po nás chce vybrat činitel pohltivosti solárního záření pro konstrukci přilehlou k exteriéru. Dobře tedy, řekneme si například, že půjdeme cestou reality, a zadáme světlost povrchu takovou, která přibližně odpovídá povrchu stropu k půdě.

Konstrukce stropu k půdě je na formuláři PLOCHY zařazena mezi konstrukce k exteriéru:

A na formuláři zadání PLOCHY to v zadání výrazně "zaškřípe" podruhé: Jaké mám zadat zastínění stropu k půdě Fsh,O, když jde vlastně o strop k půdě a nad ním je ještě celá střešní konstrukce? Dobře tedy, řekněme si například, že půjdeme cestou reality, a zadáme činitel zastínění Fsh,O=0,00 = > čili konstrukce stropu je plně zastíněna střešní konstrukcí.

ad 5) - zadání stropu k půdě k exteriéru s požadavkem jako na plochou střechu

Pro tento způsob zadání platí vše stejné jako v předchozím bodě ad 4), jen s tím rozdílem, že požadavek na strop k půdě zvolíme jako na plochou střechu:


REKAPITULACE MODELŮ NA ZÁKLADĚ VLASTNOSTÍ MODELŮ ZADÁNÍ A VÝSLEDKŮ:

Komentáře k hodnocení modelů zadání:

- I kdyby zpracovatel u hodnocené budovy byl natolik zkušený, že by se podařilo správně odhadnout teplotu v nevytápěném prostoru půdy, tak u referenční budovy dojde vždy ke zkreslení! ( Jen u minimum případů bývá shodná referenční buduova s hodnocenou). Proto výpočtové postupy dle bodů 2,3,4,5 mají záporné "smajlíky" a nedoporučovali bychom je jako vhodné.

- Uvažovat stropní konstrukci k půdě jako konstrukci přilehlou k exteriéru (viz postupy 4 a 5) je považováno za nejhorší, protože kombinuje negativa úskalí popsaného v odrážce výše a navíc je zde problém se správným zohledněním solární bilance těchto konstrukcí u výpočtu dle EN ISO 52016-1. U konstrukce přilehlé k exteriéru se totiž negativní sálání uvažuje vždy (solární zisky snižuje). Pokud bude ale zadána jako plně zastíněná (Fsh,O=0,00), tak výpočtově negeneruje žádný solární zisk. Pak se taková konstrukce podepisuje na výsledných solárních ziscích budovy pouze negativně (jen je snižuje v důsledku negativního sálání plnou vahou a nekompenzuje to solárním ziskem). Pokud by bylo zadáno Fsh,O=1,00 v součtu by nebyla samotná solární bylance této konstrukce pouze negativní, ale jsou zde stále pochybnosti o relevantnosti výpočtu solární bilance této konstrukce.

- Reálně se solární tepelné zisky (střešního pláště nikoliv stropní konstrukce) mají projevit v teplotě nevytápěného prostoru půdy (pokud v zadání připustíme vliv tepelných zisků nevytápěného prostoru do výpočtu - uživatelská volba v zadání). Pokud v zadání bude preferován způsob modelu ad 1), tak z hlediska logiky modelu není pochybnost při zadání pohltivosti (odstínu) střešního pláště. Stejně tak u činitele zastínění střešního pláště Fsh,O nevytápěné půdy.

- Nastavení požadavku na konstrukci stropu k půdě jde za technickými předpisy. Z hlediska současného stavu je na plochou střechu přísnější požadavek než na strop k půdě, neboť se obecně předpokládala v prostou půdy vyšší teplota než v exteriéru. Tzn. že rozdíl teplot "vytápěný interiér-půda" se dle normy předpkládá průměrně cca o 20% nižší než rozdíl teplot "vytápěný interiér-exteriér". Tomu odpovídá i cca 20% rozdíl v požadavku na strop k půdě než na plochou střechu. To je problém u referenční budovy, kde volbou požadavku na tuto konstrukci ovlivňujeme výši nastaveného požadavku potřeby. Proto z pricipiálního hlediska nesmí docházet ke křížení požadavku na typ modelu a typ požadavku. Z tohoto důvodu výpočetní model 4 považujeme ze všech za ten nejhorší (potřeba u referenční budovy je uměle navyšována v důsledku volby požadavku na strop k půdě jako pro vnitřní konstrukci, ačkoliv je v modelu pojmuta jako vnější konstrukce přilehlá k exteriéru).

ZÁVĚR:

  • Na dotaz, jaké zadat zastínění stropu k půdě Fsh,O zadaného dle výpočetních postupů 4 nebo 5 při výpočtu dle EN ISO 52016-1 odpovíme pouze tak, že je nutno zvolit výpočetní model ad 1). Právě kvůli vyhnutí se deformacím u referenční budovy a u solární bilance stropu k půdě! To platí i pro případy v rámci výpočtu NZÚ počítané dle EN ISO 52016-1, resp. vyhl. 264/2020 Sb. Pokud je nunto se ve výpočtu přiblížit teplotě exteriéru v prostru půdy, volte vyšší objem větrání mezi nevytápěným prostorem půdy a exteriérem.
  • Na dotaz, zda lze zadat strop k půdě dle výpočetních postupů 2 a 3 při výpočtu dle EN ISO 52 016-1 odpovíme pouze tak, že doporučujeme výpočetní model ad 1). Právě kvůli vyhnutí se deformacím u referenční budovy!
  • Na dotaz, zda lze zadat strop k půdě dle výpočetních postupů 2, 3, 4 a 5 při výpočtu dle EN ISO 13 790 odpovíme pouze tak, že doporučujeme výpočetní model ad 1). Právě kvůli vyhnutí se deformacím u referenční budovy!
  • Na dotaz, že NZÚ požadoval (dle metodického pokynu čl. 2.2 pro výpočet dle EN ISO 13790, resp. vyhlášky 78/2013 Sb.) pro oblast podpory B výpočetní postup 5 odpovíme pouze tak, že pro hodnocenou budovu to je akceptovatelné, ale pro nastavení požadavku referenční budovy již nikoliv. Odůvodnění vychází ze závěru tohoto článku zde. Čili požadavek na kvalitu zateplení stropu k půdě u hodnocené budovy pro oblast podpory B vede i při modelu zadání 1 (bilančním výpočtu) k teplotám nevytápěné půvdy velmi blízké teplotě exteriréru (teplotní redukce blízká hodnotě 1,00). Proto bylo možné u hodnocené budovy rovnou připustit takové zjednodušení zadání bez negativního vlivu na výsledek. V souvislosti s EN ISO 52016-1 však již takové zjednodušení kvůli solární bilanci i neprůsvitných konstrukcí není akceptovaltené.
  • Zajisté by stálo za to v rámci výzkumného úkolu dlouhodobě měřit teploty na nevytápěné půdě ve vybraných RD v různých lokalitách a konkrétního stavebního řešení. Na základě všech potřebných vstupů (tj. teplota na půdě, intanzita solární záření, vlastnosti konsrukcí atd.) by šlo zpětně v rámci akceptovatelné přesnosti dopočítát průměrnou výměnu vzduchu. Abychom měli reálnou představu, v jakých mezích se pohybuje (v desetinách, jednotkách nebo dokonce desítkách 1/h ?)
Dopady zvoleného výpočetního postupu nevytápěných prostor na konkrétním objektu jsou uvedeny v tmto článku:  Proč je generována výpočtová potřeba tepla na vytápění i v letních měsících?

Rozvody tepla a chladu mimo budovu
16. 10. 2020 | Autor: Ing. Martin Varga
V tomto článku popíšeme novou funkci programu ENERGETIKA od verze 6.0.3. - možnost zadání účinnosti rozvodů tepla a chladu mimo budovu do samostatných polí přímo k tomu určených.
červen 2020
Tepelné ztráty zeminou: průměrná roční (EN ISO 52016-1) vs. průměrná měsíční teplota (EN ISO 13 790)
23. 6. 2020 | Autor: Ing. Martin Varga
V souvislosti s výpočtem potřeby tepla a chladu dle EN ISO 52 016-1 došlo v této normě (čl. 6.6.5.1.) ke změně použití teploty pro stanovení tepelných ztrát konstrukcí přilehlých k zemině, pakliže jsou její měrné ztráty stanoveny dle EN ISO 13 370. Má být použita průměrná roční exteriérová teplota místo průměrné měsíční exteriérové teploty jako v případě EN ISO 13 790.
Jaký vliv mají neprůsvitné konstrukce v celkové solární bilanci při výpočtu dle EN ISO 52016-1?
16. 6. 2020 | Autor: Ing. Martin Varga
V tomto článku na konkrétním případě ukážeme jaký vliv na celkové solární bilanci mají neprůsvitné konstrukce.
Vložení omezujících podmínek - výpočet EN ISO 52016-1
16. 6. 2020 | Autor: Ing. Martin Varga
Po prvních zkušenostech "ostrého provozu" s výpočtem potřeby tepla a chladu dle EN ISO 52 016-1 byla u programu ENERGETIKA vystavena verze 5.0.1., ve které byly ve výpočtu doplněny některé omezující podmínky, které mají za cíl usměrnit výpočet v případě méně obvyklých až nestandardních zadání.
Tepelné ztráty větráním EN ISO 13 790 vs. EN ISO 52 016-1
3. 6. 2020 | Autor: Ing. Martin Varga
Mezi normami došlo k výraznému posunu jak ve výpočtu samotné hodnoty infiltrace, tak ve způsobu zahrnutí infiltrace do výpočtu. Níže v článku názorně a podrobněji probereme, proč a jak se výsledky liší. Citelná odlišnost nastává zejména u přirozeně větraných objektů a to v závislosti na zvolených vstupech do výpočtu výše infiltrace.
květen 2020
EN ISO 52 016-1: solární zisky
27. 5. 2020 | Autor: Ing. Martin Varga
Níže v článku vysvětlíme rozdíly ve výpočtu v SW solárních tepelných zisků dle EN ISO 13790 a EN ISO 52016-1.
EN ISO 52 016-1: nevytápěné prostory
27. 5. 2020 | Autor: Ing. Martin Varga
V SW ENERGETIKA je od verze 5.0.0 dle normy ČSN EN ISO 52 016-1 jiným způsobem zapracován vliv tepelných zisků v nevytápěných prostorech pro snížení potřeby tepla/zvýšení potřeby chladu k nim přilehlých prostorů s požadovanou teplotou. Níže v článku popíšeme tento přístup.
duben 2018
Redukční faktor "b" při výpočtu potřeby tepla na vytápění část 2
3. 4. 2018 | Autor: Ing. Martin Varga
V tomto článku si vysvětlíme, jakým způsobem se do programu ENERGETIKA zadávají nevytápěné prostory.
leden 2018
Kdy použít energonositel: Soustava zásobování tepelnou energií
9. 1. 2018 | Autor: Ing. Martin Varga
V tomto článku shrneme zásady pro volbu správného energonositele při zpracování PENB v případě předpokladu, že "jde o dálkové teplo".
prosinec 2017
Přerušované vytápění a měsíční krok výpočtu dle ČSN EN ISO 13 790: 2009
7. 12. 2017 | Autor: Ing. Martin Varga
Měsíční výpočet "stojí" svou přesností mezi sezónní a jednoduchou hodinovou metodou výpočtu. Otázkou je, zda-li měsíční výpočet svým způsobem zadání a výpočtem dokáže uspokojivě přiblížit realitu pro všechny případy zadání. Níže v článku se pokusíme vysvětlit, kdy měsíční výpočet je možné použít a kdy raději nikoliv i pro vytápění, a kdy bychom měli raději použít hodinový výpočet.
březen 2017
Požadavky na účinnost zdrojů tepla v PENB (připomínky k vyhlášce 4)
20. 3. 2017 | Autor: Ing.Martin Varga
Ze strany SEI je připomínkována skutečnost, že v protokolech PENB nejsou v tabulkách b.1.b), popř.b.5.b) u stejných tepelných zdrojů uvedeny stejné hodnoty účinností jako v tabulkách b.1.a) a b.5.a.). Níže v článku uvedeme bližší rozbor takové situace.
listopad 2016
Graf rozložení tepelných ztrát
8. 11. 2016 | Autor: Ing. Martin Varga
Výsledkový servis výpočtů je postupně doplňován o nové tabulkové a grafické prvky. Nyní od verze programu ENERGETIKA 4.2.8 byly doplněny do protokolu energetického štítku obálku budovy (EŠOB) koláčové grafy pro základní přehled struktury tepelných ztrát po jednotlivých typech konstrukcí (stěny, střechy a stropy, podlahy, výplně, k zemině, tepelné vazby) pro každou zónu. Grafy jsou uvedeny pro hodnocenou i referenční budovu dle ČSN 73 05040-2.
Odlišné zadání vstupů (vytápění, chlazení) po měsících - část 2
8. 11. 2016 | Autor: Ing. Martin Varga
U MĚS i NZÚ modulu (moduly s měsíčním krokem výpočtu) doplněna funkce (od verze programu ENERGETIKA 4.2.8.) pro možnost zadání odlišných vstupů cílových teplot na vytápění i chlazení pro každý měsíc v roce. A to jak pro řešenou zónu, tak pro profil teplot v přilehlé sousední budově/prostoru.
květen 2016
Podíly pokrytí v protokolu PENB (podněty k vyhlášce o ENB č. 78/2013 Sb. část 2)
24. 5. 2016 | Autor: Ing. Martin Varga
Ve vzoru protokolu PENB v příloze č. 4 vyhlášky o ENB 78/2013 (v aktuální znění) jsou tabulky pro technické systémy budovy, u nichž v jednom sloupci je uvedeno "Pokrytí dílčí potřeby energie [%]". Podle tabulky pro konkrétní systém jde o podíl pokrytí vytápění, chlazení, větrání nebo přípravu teplé vody. Ze vzoru protokolu PENB jednoznačně nevyplývá, "čeho" podíl se má vyjadřovat. Viz následující příspěvek.
březen 2016
Vliv hodnoty n50 na potřebu tepla na vytápění
14. 3. 2016 | Autor: Ing. Martin Varga
Zpracovatelé PENB si všimnou, že v některých přípradech navrhované opatření instalace nuceného větrání s rekuperací nemá energeticky úsporný efekt nebo má menší, než by očekávali. Čím je to způsobeno?
únor 2016
Redukční faktor "b" při výpočtu potřeby tepla na vytápění část 1
24. 2. 2016 | Autor: Ing. Martin Varga
Tento příspěvek blíže vysvětluje, jaký vliv má použitý výpočetní postup na stanovení potřeby tepla na vytápění pro konstrukce, které nejsou přímo přilehlé k exteriéru (nevytápěné prostory). A následně uvádí důvody k preferování stanovení redukčního faktoru měrných tepelných ztrát "b" podrobným výpočtem, oproti uvažování tabulkových hodnot.
prosinec 2015
Intenzita větrání v profilech užívání
16. 12. 2015 | Autor: Ing. Martin Varga
V předdefinovaných profilech užívání dle TNI 73 0331 je možnost definování výměny vzduchu v zóně až 3 způsoby. Níže uvedeme podrobnosti týkající se uvažované výměny vzduchu v zadání pro výpočet od verze 4.2.1.
Kombinovaná výroba elektřiny a tepla (KVET)
11. 12. 2015 | Autor: Ing. Martin Varga
Do aplikace ENERGETIKA je doplněna možnost zadání kogenerace tj. kombinované výroby elektřiny a tepla.
květen 2015
Zahrnutí konstrukcí přilehlých k zemině v nevytápěném prostoru do bilančního výpočtu
15. 5. 2015 | Autor: Ing. Martin Varga
Setkali jsme se s názorem, že se u nevytápěných prostorů nemá uvažovat do bilance tepelných toků s tepelným tokem přes konstrukce přilehlé k zemině. Tento názor byl podpořen interpretací znění POZNÁMKY 2 v kapitole 6 normy ČSN EN ISO 13 789, která zní: "Prostup tepla zeminou není zahrnut v hodnotě Hiu ani v hodnotě Hue". Přičemž se tato poznámka vztahuje ke vzorci pro stanovení činitele teplotní redukce pro nevytápěný prostor b= Hue / (Hue+Hiu). Poznámka: Hue přestavuje měrný tepelný tok mezi nevytápěným prostorem a exteriérem a Hiu představuje měrný tepelný tok mezi vytápěným a nevytápěným prostorem. Dále v článku vysvětlíme, proč tento názor nesdílíme a proč není podle našeho názoru správný při znalosti kontextu norem ČSN EN ISO 13 789 a ČSN EN ISO 13 370.
listopad 2014
Vstupuje hodnota n50 do výpočtu energetické náročnosti přirozeně větraných budov?
4. 11. 2014 | Autor: Ing. Martin Varga
Na technickou podporu jsme dostali zajímavý dotaz ohledně zadávání násobnosti výměnu vzduchu v SW Energetika. Tazatel se ptá, zda vstupuje větrání netěsnostmi konstrukcí (hodnota n50) do výpočtu energetické náročnosti v případě, že ke zóna přizozeně větraná. Danou problematiku konzultoval se zástupci SFŽP a ČVUT a dostal informaci, že pokud někdo uvažuje ve výpočtu s hodnotou n50, postupuje v rozporu s ČSN EN ISO 13789. Pojďme se na tuto problematiku podívat podrobněji.
Zobrazování referenčních hodnot v protokolu PENB
3. 11. 2014 | Autor: Ing. Martin Varga
Častý dotaz uživatelů softwaru ENERGETIKA je k protokolu PENB, kde se nezobrazují referenční hodnoty např. pro jednotlivé stavební konstrukce nebo i pro zdroje tepla, chladu. (Aktualizace 2017-11-09)
říjen 2014
Zadání více různých zdrojů tepla v bytovém domě
23. 10. 2014 | Autor: Ing. Martin Varga
Zadání více lokálních tepelných zdrojů na vytápění do programu ENERGETIKA u bytových domů. Tento princip je aplikovatelný nejen pro bytové domy.