Omezit pro: 
leden 2024
Jaká jsou úskalí při užití (nejen) vlastních klimadat z hlediska solárních tepelných zisků?
30. 1. 2024 | Autor: Ing. Martin Varga
V tomto článku upozorníme na některé souvislosti hodinového výpočtu v programu ENERGETIKA při výpočtu solárních tepelných zisků. A doporučíme co dělat, pokud se po výpočtu v jejich průběhu objeví "anomálie" v podobě velmi vysoké hodinové hodnoty.
říjen 2023
Využití odpadního tepla z chlazení vnitřního prostředí ve výpočtu ENB
20. 10. 2023 | Autor: Ing. Martin Varga
Do programu byly doplněny funkce pro jednodušší postihnutí , resp. zadání zpětného využití odpadního tepla z chlazení upravovaného vnitřního prostředí (měsíční výpočty od verze 6.0.7, hodinové výpočty od verze 7.1.5). Aktualizace 20.10.2023
Klasifikace chlazení ve třídě G
11. 10. 2023 | Autor: Ing. Martin Varga
Zejména u novostaveb často dochází k situacícm, kdy je zadán systém chlazení. Ve "štítku" PENB je však klasifikován ve třídě G (mimo RD/BD), což u novostaveb ostatních typů budov vzbuzuje pochybnosti o správnosti výpočtu. Co je toho příčinou?
leden 2022
ENERGETIKA 6.0.7 - nové tabulky a grafy spotřeby pro pomocné spotřebiče
14. 1. 2022 | Autor: Ing. Martin Varga
Do protokolu mezivýsledků byly doplněny nové tabulky a grafy. Rozšiřují přehled informací o hodnocené, ale i o referenčních budovách.
ENERGETIKA 6.0.7 - chlazení pomocí freecoolingu
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byla přímo doplněna možnost volby zadat zdroj chladu jako freecooling.
ENERGETIKA 6.0.7 - měsíční podíly pokrytí
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byly doplněny možnosti zadat podíly pokrytí potřeby tepla na vytápění, chladu na chlazení a potřeby tepla na přípravu teplé vody po měsících.
ENERGETIKA 6.0.7 - výpočet Uem,R pro chladírny a mrazírny
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byly doplněny funkce pro jednodušší postihnutí tohoto typu zóny (chladírna/mrazírna) z pohledu výpočtu referenčního Uem,R a referenčních spotřeb energií.
březen 2021
Co nového přinesla verze programu ENERGETIKA 6.0.5 ?
29. 3. 2021 | Autor: Ing. Martin Varga
Verze programu ENERGETIKA 6.0.5. přinesla již avizované funkce a něco navíc. Zde si je podrobněji uvedeme.
Zadání vlastní hodnoty emisivity konstrukce pro výpočet "negativního" sálání
29. 3. 2021 | Autor: Ing. Martin Varga
Ve verzi programu 6.0.5 byla vystavena možnost zadání konkrétní hodnoty emisivity u každé vnější konstrukce (přilehlé k vnějšímu vzduchu). Výpočet dle EN ISO 52016-1 doposud uvažoval pouze paušálních hodnot emisivity resp. už výsledného součinitele přestupu dlouhovlnným sáláním mezi vnějším povrchem konstrukce a oblohou, a to především u nových výplní vede k navýšení potřeby tepla na vytápění. Toto je další možnost jak tuto potřebu snížit.
Vliv okrajových podmínek na vypočtenou hodnotu infiltrace EN ISO 52016-1
15. 3. 2021 | Autor: Ing. Martin Varga
Tento článek navazuje na již dříve uvedený (odkaz níže), týkající se vlivu voleb v zadání pro výpočet infiltrace na její výpočtovou výši dle EN ISO 52016-1, resp. prováděcí normu pro výpočet větrání EN 16 798-7. Nyní se podrobněji podíváme na jednu vstupní okrajovou podmínku výpočtu - referenční rychlost větru ve výšce 10 m nad zemí.
leden 2021
Pohltivost povrchu u neprůsvitných konstrukcí pro solární záření
18. 1. 2021 | Autor: Ing. Martin Varga
Jedním z frekventovaných dotazů je i dotaz na to, jaká jsou pravidla pro označení nějakého povrchu neprůsvitné konstrukce za světlý, polotmavý nebo tmavý? Níže v článku se pokusíme o odpoveď.
říjen 2020
Rozvody tepla a chladu mimo budovu
16. 10. 2020 | Autor: Ing. Martin Varga
V tomto článku popíšeme novou funkci programu ENERGETIKA od verze 6.0.3. - možnost zadání účinnosti rozvodů tepla a chladu mimo budovu do samostatných polí přímo k tomu určených.
červen 2020
Tepelné ztráty zeminou: průměrná roční (EN ISO 52016-1) vs. průměrná měsíční teplota (EN ISO 13 790)
23. 6. 2020 | Autor: Ing. Martin Varga
V souvislosti s výpočtem potřeby tepla a chladu dle EN ISO 52 016-1 došlo v této normě (čl. 6.6.5.1.) ke změně použití teploty pro stanovení tepelných ztrát konstrukcí přilehlých k zemině, pakliže jsou její měrné ztráty stanoveny dle EN ISO 13 370. Má být použita průměrná roční exteriérová teplota místo průměrné měsíční exteriérové teploty jako v případě EN ISO 13 790.
Jaký vliv mají neprůsvitné konstrukce v celkové solární bilanci při výpočtu dle EN ISO 52016-1?
16. 6. 2020 | Autor: Ing. Martin Varga
V tomto článku na konkrétním případě ukážeme jaký vliv na celkové solární bilanci mají neprůsvitné konstrukce.
květen 2020
EN ISO 52 016-1: solární zisky
27. 5. 2020 | Autor: Ing. Martin Varga
Níže v článku vysvětlíme rozdíly ve výpočtu v SW solárních tepelných zisků dle EN ISO 13790 a EN ISO 52016-1.
EN ISO 52 016-1: nevytápěné prostory
27. 5. 2020 | Autor: Ing. Martin Varga
V SW ENERGETIKA je od verze 5.0.0 dle normy ČSN EN ISO 52 016-1 jiným způsobem zapracován vliv tepelných zisků v nevytápěných prostorech pro snížení potřeby tepla/zvýšení potřeby chladu k nim přilehlých prostorů s požadovanou teplotou. Níže v článku popíšeme tento přístup.
V SW ENERGETIKA je dostupná jen možnost uvažovat typ nevytápěného prostoru vždy pouze vnější.  O co konkrétně jde, je uvedeno na následujícím schématu. Norma ve svém čl. 6.4.5.1 rozlišuje tyto dva typy způsobu zahrnutí nevytápěného prostoru do výpočtu. Podle volby typu nevytápěného prostoru se liší způsoby výpočtu v normě.


Zatímco vnější typ nevytápěného prostoru lze použít vždy, tak použití vnitřního typu nevytápěného prostoru je normou omezeno na případy, kdy nejsou přesně známy konstrukce mezi zónou a nevytápěným prostorem (plochy, tepelný odpor) a současně/nebo vnitřní a solární tepelné zisky v nevytápěném prostoru nejsou dominantní. Tento vnitřní typ nevytápěného prostoru není tedy vhodný pro atria, zimní zahrady apod.

Dále se budeme zabývat pouze vnějším typem nevytápěného prostoru. Vnější nevytápěný prostor se v SW zadává stejně jako ostatní zóny s požadavkem na teplotu, jen s tím rozdílem, že profil užívání pro tento prostor se volí nevytápěný i nechlazený čili např. profil užívání  "Obecný nevytápěný prostor", "Prostor pod zvýšenou podlahou" nebo lze definovat vlastní profil nevytápěného prostoru, který nemá uveden požadavek na cílové teploty pro režim vytápění ani chlazení. Pro vnější nevytápěný prostor platí, že dělící konstrukce mezi ním a přilehlou zónou je vždy součástí obálky budovy a jeho podlahová plocha se nezahrnuje do celkové energeticky vztažné podlahové plochy.


Poznámka: Toto není úplně komfortní například pro případy nevytápěných schodišť vnořených do hmoty objektu, resp. do vytápěné obytné zóny. Zejména v případě, kdy chceme, abychom za obálku budovy uvažovaly stěnu mezi nevytápěným schodištěm a exteriérem. V takovém případě to má v SW pouze řešení uvažovat vše jako jednu vytápěnou zónu. Tzn. i na vnější konstrukce nevytápěného schodiště je nutno klást požadavky dle vnitřní teploty jako v obytné části. 

Pro stanovení tepelných ztrát/zisků prostupem zón přilehlých k nevytápěným prostorům je nutné stanovit teplotu v nevytápěném prostoru. Dle čl. 6.4.5.3 je teplota v nevytápěném prostoru stanovena s vyloučením vlivu vnitřních nebo solárních tepelných zisků. Tyto zisky (pokud k nim dochází) jsou zahrnuty do přiléhající zóny (zónám). Způsob zahrnutí je popsán níže.

Teplotu v nevytápěném prostoru SW stanovuje vždy podle normativní přílohy C EN ISO 13 789. Důvod je ten, že tento vzorec je naprosto univerzální pro jednu nebo více přilehlých zón k nevytápěnému prostoru včetně případně uvažovaných tepelných zisků v nevytápěném prostoru.

θu,H = ( Φ + SUMA ( θint,H,avg,j * Hiu,j ) + θe * Hue ) / ( SUMA Hiu,j + Hue )     (C.1)
θu,C = (Φ + SUMA ( θint,C,avg * Hiu,j ) + θe * Hue ) / ( SUMA Hiu,j + Hue )     (C.1)

θu (°C) - teplota v nevytápěném prostoru pro režim vytápění / chlazení v přilehlých zónách
θe (°C) - teplota v exteriéru
θint,avg,j (°C) - průměrná teplota v přilehlé j-té zóně k nevytápěnému prostoru pro režim vytápění / chlazení
Hiu,j (W/K) - měrná tepelná ztráta mezi j-tou přilehlou zónou a nevytápěným prostorem
Hue (W/K) - měrná tepelná ztráta mezi nevytápěným prostorem a exteriérem
Φ (W) - tepelný výkon v nevytápěném prostoru (vnitřní tepelné zisky, solární zisky apod.) - dle čl. normy uvedeného výše se vždy tento činitel pro stanovení teploty v nevytápěném prostoru uvažuje 0 W a to i v případě, kdy byly v tomto nevytápěném prostoru tepelné zisky zadány.

S touto teplotou nevytápěného prostoru se pak uvažuje při výpočtu tepelných ztrát prostupem k němu přilehlých zón.

V případě, že dle zadání nevytápěného prostoru jsou generovány tepelné zisky, neprojevuje se jejich vliv dle EN ISO 52 016-1 zvýšenou teplotu nevytápěného prostoru pro výpočet tepelných ztrát (ta je vždy spočítána bez nich), ale poměrná část tepelných zisků v nevytápěném prostoru se použije jako další tepelný zisk v přilehlé zóně přímo, jako kdyby se generoval v této zóně.

Toto je rozdíl, který v SW ENERGETIKA je mezi výpočtem zvoleným dle normy EN ISO 13790 a normy EN ISO 52016-1. Při výpočetním postupu dle EN ISO 13 790 je vliv vypočtených tepelných zisků v nevytápěném prostoru promítnut do stanovení teploty v nevytápěném prostoru (ve vzorci výše je Φ > 0 W = > pokud jsou tepelné zisky pro daný měsíc v nevytápěném prostoru uvažovány. Zpravidla jsou zisky v kWh/měs = > jsou poděleny počtem hodin v daném měsíci a převedeny na W pro užití v rovnici C.1). V přilehlých zónách se pak neuvažovaly žádné tepelné zisky z nevytápěného prostoru.

Jakým způsobem se tepelné zisky v nevytápěném prostoru dle EN ISO 52 016-1 dělí mezi přilehlé zóny?

Obecně pro jakýkoliv typ tepelných zisků (spotřebiče, osoby, osvětlení, solární zisky) platí pro stanovení jejich podílu pro uvažování v přilehlé zóně tyto vzorce:

Qgn,H,redZ j,u k = Qgn,H,u,k * ( 1 - bu,k ) * Fu,k,j fgn,H,max,k    (118, 121)
Qgn,C,redZ j,u k = Qgn,C,u,k * ( 1 - bu,k ) * Fu,k,j fgn,C,max,k    (-)
bu,k = Hue / (Hue + SUMA Hiu,j )    (2)
Fu,k,j = Hiu,j / SUMA Hiu,j    (3)
fgn,H,max,k = ( bu,k * SUMA (Hiu,j * ( θint,H,calc,j - θe )) * 0,001 * t ) / Qgn,H,u,k    (E.10)
fgn,C,max,k = ( bu,k * SUMA (Hiu,j * ( θint,C,calc,j - θe )) * 0,001 * t ) / Qgn,C,u,k    (-)

Qgn,H/C,red Z, u k (kWh) - redukované tepelné zisky z k-tého nevytápěného prostoru do j-té přilehlé zóny pro režim vytápění/chlazení
Qgn,H/C,u k (kWh) - tepelné zisky v k-tém nevytápěném prostoru pro režim vytápění / chlazení v přilehlých zónách
bu,k (-) - upravující činitel pro k-tý nevytápěný prostor
Fu,k,j (-) - redistribuční činitel pro k-tého nevytápěného prostoru pro j-tou přilehlou zónu
fgn,H/C,max,k (-) - redukční činitel pro vyloučení nadhodnocení tepelných zisků pro režim vytápění / chlazení  <0;1>
θint,H/C,calc,j (°C) - výpočtová teplota v přilehlé j-té zóně k nevytápěnému prostoru pro režim vytápění / chlazení

Redukční činitel pro vyloučení nadhodnocení tepelných zisků "fgn" je omezen ve svém výsledku intervalem hodnot <0;1>. Omezuje výši redukovaných tepelných zisků pro zónu v tom smyslu, že tepelné zisky v tepelně neupravovaném prostoru nejsou vyšší než tepelná ztráta přes tento tepelně neupravovaný prostor. V EN ISO 52016-1 je v kapitole E.3.3. uveden redukční činitel pro vyloučení nadhodnocení tepelných zisků jen pro režim vytápění. Vzhledem k logice výsledků je však v SW zaveden i pro režim chlazení.

V protokolu mezivýsledků:

U vytápěných / chlazených zón jsou uvedeny tabulky a grafy pro oba režimy včetně redukovaných tepelných zisků ze všech přilehlých tepelně neupravovaných prostorů (jsou-li přilehlé a jsou-li v nich dle zadání generovány tepelné zisky):


Poznámka: V grafu tepelných zisků zón jsou uvedeny redukované tepelné zisky z přilehlých nevytápěných prostorů souhrnně za všechny přilehlé nevytápěné prostory. V tabulce nad grafem jsou pak uvedeny souhrnné redukované tepelné zisky po jednotlivých přilehlých nevytápěných prostorech. Z grafu je patrné, že je v zóně zadáno vyšší stínění výplní pro solární zisky od června do září a také, že pro režim vytápění je tento podíl zastínění pohyblivými stínícími prvky zadán odlišně (v rámci testovacích souborů je třeba otestovat mnoho možností).

U každého nevytápěného prostoru je uvedena tabulka s výše uvedenými redukčními činiteli, tepelnými zisky výpočtově stanovenými pro nevytápěné, resp. tepelně neupravované prostory a také teplotou v něm. Níže v tabulce jsou uvedeny dvě sady teplot v nevytápěném prostoru. Červeně označené teploty jsou stanoveny dle rovnice C.1 (viz výše) bez vlivu tepelných zisků. Tato teplota slouží pro výpočet tepelné ztráty prostupem skrz dělící konstrukci k nevytápěnému prostoru. Stejné teploty v nevytápěném prostoru lze stanovit i podle rovnice  (1) v EN ISO 52016-1:

θH,u,k =  θe + (1-bu,k) * ( SUMA ( θint,H,calc,j * Fu,k,j) - θe )     (1)
θC,u,k =  θe + (1-bu,k) * ( SUMA ( θint,C,calc,j * Fu,k,j) - θe )     (-)

θint,H/C,calc (°C) - výpočtová teplota v přilehlé j-té zóně k nevytápěnému prostoru pro režim vytápění / chlazení
θH/C,u (°C) - teplota v nevytápěném prostoru pro režim vytápění / chlazení
θe (°C) - teplota v exteriéru
b,k (-) - upravující činitel pro k-tý nevytápěný prostor (rovnice viz výše)
Fu,k,j (-) - redistribuční činitel pro k-tý nevytápěný prostor pro j-tou přilehlou zónu (rovnice viz výše)

Poznámka:  V EN ISO 52016-1 je v rovnici (1) uvedena chyba, protože tam není uveden člen "(1-bu,k)", ale pouze "bu,k". Jelikož v rovnici (1) značí druhý členu rovnice příspěvek teplot v přilehlých zónách pro výslednou teplotu v tepelně neupravovaném prostoru, není možné v této rovnici použít redukční člen "bu,k" pro měrné ztráty ze zóny přes neupravovaný prostor do exteriéru, ale jen tu "redukci" mezi zónou do neupravovaného prostoru. Pouze po této úpravě vychází z této rovnice (1) shodné výsledky teplot v tepelně neupravovaném prostoru jako u rovnice (C.1) dle EN ISO 13 789.

Modře označené teploty v tepelně neupravovaném prostoru jsou stanoveny dle rovnice C.1 (viz výše) s vlivem tepelných zisků (pokud jsou samozřejmě v tepelně neupravované zóně zadány). Tato teplota dle EN ISO 52016-1 nevstupuje do výpočtu, je informativní (její využití je možné pro posouzení např. tepelných izolací rozvodů v nevytápěném prostoru apod.)



Poznámka: Tabulky a grafy výše pochází z testovacího souboru, kdy se testuje mnoho věcí (ne vždy to musí být reálné zadání - testování je vhodnější provádět na extrémních případech). Na grafu tepelných zisků nevytápěného prostoru Z5 jsou vidět záporné solární zisky v měsících 1, 11 a 12 u režimu chlazení. To je výsledkem zadané vysoké míry zastínění pro solární záření v těchto měsících pro tento režim výpočtu a stalo se tak, že negativní sálání k obloze převýšilo solární tepelné zisky (viz článek zde popisující výpočet solárních zisků, mezi něž je zahrnuto i negativní sálání k obloze).  

červenec 2018
Výpočet negeneruje potřebu chladu - příčiny
16. 7. 2018 | Autor: Ing.Martin Varga
Na technické podpoře k programu ENERGETIKA se poměrně často setkáváme s dotazem na příčinu nulové hodnoty potřeby chladu ve výsledku výpočtu, ačkoliv systémy chlazení byly zadány. Níže v článku si rozebereme jednotlivé možné příčiny.
prosinec 2017
Přerušované vytápění a měsíční krok výpočtu dle ČSN EN ISO 13 790: 2009
7. 12. 2017 | Autor: Ing. Martin Varga
Měsíční výpočet "stojí" svou přesností mezi sezónní a jednoduchou hodinovou metodou výpočtu. Otázkou je, zda-li měsíční výpočet svým způsobem zadání a výpočtem dokáže uspokojivě přiblížit realitu pro všechny případy zadání. Níže v článku se pokusíme vysvětlit, kdy měsíční výpočet je možné použít a kdy raději nikoliv i pro vytápění, a kdy bychom měli raději použít hodinový výpočet.
listopad 2016
Odlišné zadání vstupů (vytápění, chlazení) po měsících - část 2
8. 11. 2016 | Autor: Ing. Martin Varga
U MĚS i NZÚ modulu (moduly s měsíčním krokem výpočtu) doplněna funkce (od verze programu ENERGETIKA 4.2.8.) pro možnost zadání odlišných vstupů cílových teplot na vytápění i chlazení pro každý měsíc v roce. A to jak pro řešenou zónu, tak pro profil teplot v přilehlé sousední budově/prostoru.
květen 2016
Podíly pokrytí v protokolu PENB (podněty k vyhlášce o ENB č. 78/2013 Sb. část 2)
24. 5. 2016 | Autor: Ing. Martin Varga
Ve vzoru protokolu PENB v příloze č. 4 vyhlášky o ENB 78/2013 (v aktuální znění) jsou tabulky pro technické systémy budovy, u nichž v jednom sloupci je uvedeno "Pokrytí dílčí potřeby energie [%]". Podle tabulky pro konkrétní systém jde o podíl pokrytí vytápění, chlazení, větrání nebo přípravu teplé vody. Ze vzoru protokolu PENB jednoznačně nevyplývá, "čeho" podíl se má vyjadřovat. Viz následující příspěvek.
červenec 2015
Chladírny a mrazírny v hodnocení ENB - zadat, nezadat ? Jak zadat ?
24. 7. 2015 | Autor: Ing. Martin Varga
Někdy se zpracovatelé PENB dotazují, zda při hodnocení průkazu ENB mají zahrnout i spotřebu energie na chlazení popř. mrazení. Níže vysvětlíme z našeho úhlu pohledu, jak se rozhodnout při zahrnutí této spotřeby do výpočtu ENB. A pokud dojdeme k závěru, že tuto spotřebu chceme do výpočtu ENB zahrnout, tak jakým způsobem. PŘÍSPĚVEK AKTUALIZOVÁN 10.7.2019.
únor 2015
Rozdíly mezi měsíčním a hodinovým výpočtem – 2. část: Potřeba chladu
17. 2. 2015 | Autor: Ing. Martin Varga
Rozdíl v přístupu výpočtu potřeby chladu mezi oběma výpočty je značný. Hodinový výpočet více odpovídá reálnému průběhu potřeby chladu v chlazené zóně, než měsíční, protože pracuje s hodinovými daty. Více je uvedeno v tomto článku.
listopad 2014
Zobrazování referenčních hodnot v protokolu PENB
3. 11. 2014 | Autor: Ing. Martin Varga
Častý dotaz uživatelů softwaru ENERGETIKA je k protokolu PENB, kde se nezobrazují referenční hodnoty např. pro jednotlivé stavební konstrukce nebo i pro zdroje tepla, chladu. (Aktualizace 2017-11-09)
červen 2014
Nezobrazuje se klasifikace spotřeby chladu u typů budov RD a BD
12. 6. 2014 | Autor: Ing. Martin Varga
Po provedení výpočtu se nezobrazuje klasifikace dílčí energetické náročnosti na chlazení v grafickém vyjádření průkazu ENB u typů budov RD a BD.
duben 2014
Dodaná energie na chlazení se zdá příliš nízká
28. 4. 2014 | Autor: Ing. Martin Varga
Při měsíčním způsobu výpočtu energetické náročnosti se může vyskytnou situace, že vychází příliš nízká dodaná energie na chlazení budovy.
Chlazení ve třídě D a horší (třeba i G) i u nových budov
28. 4. 2014 | Autor: Ing. Martin Varga
Při výpočtu energetické náročnosti se můžeme setkat s případem, kdy i u úsporné budovy vychází dílčí dodaná energie na chlazení do třídy D a horší.