Omezit pro: 
leden 2024
Jaká jsou úskalí při užití (nejen) vlastních klimadat z hlediska solárních tepelných zisků?
30. 1. 2024 | Autor: Ing. Martin Varga
V tomto článku upozorníme na některé souvislosti hodinového výpočtu v programu ENERGETIKA při výpočtu solárních tepelných zisků. A doporučíme co dělat, pokud se po výpočtu v jejich průběhu objeví "anomálie" v podobě velmi vysoké hodinové hodnoty.
listopad 2023
Vkládání podpisu do PENB
13. 11. 2023 | Autor: Ing. Martin Varga
V souvislosti s vydáním změny vyhlášky o energetických specialistech je nutno vkládat na ENEX pdf PENB včetně podpisu zpracovatele, resp. oprávněného energetického specialisty. Nově je v SW ENERGETIKA umožněna funkce vkládání obrázku podpisu a razítka.
říjen 2023
Protokol mezivýsledků v HOD modulu
20. 10. 2023 | Autor: Ing. Martin Varga
Do výsledků v HOD modulu byla doplněna (od verze 7.1.5) 1. část protokolů mezivýsledků po vzoru těchto protokolů v měsíčních modulech výpočtu. Jak časová kapacita dovolí, budou tyto protokoly v hodinovém výpočtu průběžně doplňovány o další části tak, aby z hlediska obsahu byly rovny měsíčnímu výpočtu. Aktualizace 24.11.2023.
Využití odpadního tepla z chlazení vnitřního prostředí ve výpočtu ENB
20. 10. 2023 | Autor: Ing. Martin Varga
Do programu byly doplněny funkce pro jednodušší postihnutí , resp. zadání zpětného využití odpadního tepla z chlazení upravovaného vnitřního prostředí (měsíční výpočty od verze 6.0.7, hodinové výpočty od verze 7.1.5). Aktualizace 20.10.2023
Typy tepelných zisků tvořících odpadní teplo z chlazení ve výpočtu ENB
20. 10. 2023 | Autor: Ing. Martin Varga
V článku jsou uvedeny případy, kdy lze využít ve výpočtu energetické náročnosti odpadního tepla z chlazení. A dále popsáno, jakým způsobem je toto možno zadat. (Aktualizace 13.10.2023)
Klasifikace chlazení ve třídě G
11. 10. 2023 | Autor: Ing. Martin Varga
Zejména u novostaveb často dochází k situacícm, kdy je zadán systém chlazení. Ve "štítku" PENB je však klasifikován ve třídě G (mimo RD/BD), což u novostaveb ostatních typů budov vzbuzuje pochybnosti o správnosti výpočtu. Co je toho příčinou?
září 2023
NZÚ - dokládání klasifikace Uem dle vyhlášky pro oblast podpory C.1
21. 9. 2023 | Autor: Ing. Martin Varga
V rámci podpory C.1 při výměně plynového zdroje za tepelné čerpadlo je požadavek na doložení klasifikace průměrného součinitele Uem nejhůře ve třídě D dle vyhlášky o ENB. V souvislosti s tímto požadavkem vznikly otázky, na které SFŽP odpověděl.
červen 2023
Soubor zadání PENB pro vložení na ENEX
28. 6. 2023 | Autor: Ing. Martin Varga
V souvislosti se změnou zákona 406/2000 Sb. z ledna 2020 a prováděcí vyhlášky 4/2020 Sb. o energetických specialistech vyžaduje nově Státní energetická inspekce (SEI) při vložení hlášenky na ENEX i vložení souboru zadání pro výpočetní program, s nímž byl daný PENB vypočten. Aktualizace 28.6.2023.
Jak na csv soubor v LibreOffice?
19. 6. 2023 | Autor: Ing. Martin Varga
V souvislosti s vystavením hodinového modulu výpočtu se v případě definování vlastního zadání vstupů potýkáme s csv souborem. V tomto článku navedeme uživatele, jak získat csv soubor ve správném tvaru, pracujeme-li pouze v LibreOffice.
duben 2023
HOD modul - doplnění výpisu mezivýsledků a vstupů + možnost responzivního zobrazení v grafu
27. 4. 2023 | Autor: Ing. Martin Varga
Do výsledků HOD modulu byly doplněny do xlsx výpisy některých vstupů a mezivýsledků. Současně byla doplněna funkce možnosti zobrazení těchto hodnot v responzivním grafu.
HOD vs. MĚS - část 5.: výpočet umělého osvětlení
11. 4. 2023 | Autor: Ing. Martin Varga
V sérii článků se zaměříme na příčiny rozdílů výsledků mezi měsíčním a hodinovým výpočtem. Po nutnosti počítat některé objekty v hodinovém kroku je na toto téma poměrně hodně dotazů. V části 5. se podíváme na rozdíl výpočtu umělého osvětlení.
březen 2023
HOD vs. MĚS - část 4.: (ne)spojitost výpočtu
24. 3. 2023 | Autor: Ing. Martin Varga
V sérii článků se zaměříme na příčiny rozdílů výsledků mezi měsíčním a hodinovým výpočtem. Po nutnosti počítat některé objekty v hodinovém kroku je na toto téma poměrně hodně dotazů. V části 4 se podíváme na vliv (ne)spojitosti výpočtu
HOD vs. MĚS - část 3.: ekvivalentní profily užívání?
23. 3. 2023 | Autor: Ing. Martin Varga
V sérii článků se zaměříme na příčiny rozdílů výsledků mezi měsíčním a hodinovým výpočtem. Po nutnosti počítat některé objekty v hodinovém kroku je na toto téma poměrně hodně dotazů. V části 3. se podíváme na "porovnatelnost" resp. ekvivalentnost profilů užívání pro měsíční a pro hodinový modul výpočtu.
HOD vs. MĚS - část 2A.: vliv profilů užívání (teplota, větrání, vnitřní tepelné zisky od osob a spotřebičů)
14. 3. 2023 | Autor: Ing. Martin Varga
V sérii článků se zaměříme na příčiny rozdílů výsledků mezi měsíčním a hodinovým výpočtem. Po nutnosti počítat některé objekty v hodinovém kroku je na toto téma poměrně hodně dotazů. V části 2A se podíváme na vliv profilů užívání (teplota, větrání, vnitřní tepelné zisky od osob a spotřebičů)
HOD vs. MĚS - část 1.: vliv klimadat
9. 3. 2023 | Autor: Ing. Martin Varga
V sérii článků se zaměříme na příčiny rozdílů výsledků mezi měsíčním a hodinovým výpočtem. Po nutnosti počítat některé objekty v hodinovém kroku je na toto téma poměrně hodně dotazů. V části 1. se podíváme na klimadata.
HOD modul programu ENERGETIKA - podporovaná zadání
7. 3. 2023 | Autor: Ing. Martin Varga
V článku naleznememe aktuální informace k době výpočtu HOD modulu a k rozsahu podporovaných zadání pro HOD modul programu ENERGETIKA. Aktualizováno 23.3.2023.
únor 2023
HOD modul - bilancování vyrobené elektřiny na místě
20. 2. 2023 | Autor: Ing. Martin Varga
V souvislosti s hodinovými výpočty je ve vyhlášce 264/2020 Sb. o ENB jedno ustanovení, které může způsobovat rozdíl v započítatelném odpočtu primární energie u exportované elektřiny mimo budovu mezi měsíčním a hodinovým výpočtem. A to někdy i velmy výrazně.
Testování výpočetního jádra předepsného EN ISO 52016-1
13. 2. 2023 | Autor: Ing. Martin Varga
Výsledky testování hodinového výpočetního jádra předepsaného EN ISO 52016-1
HOD modul - bilance v kapitole E (KOMENTÁŘ)
13. 2. 2023 | Autor: Ing. Martin Varga
V článku je bližší komentář k hodnotám, resp koláčovému grafu pro režim vytápění. Konkrétně k solárním tepelným ziskům. Aktualizace 8.3.2023.
leden 2023
HOD modul vystaven
26. 1. 2023 | Autor: Ing. Martin Varga
V programu ENERGETIKA byl vystaven HOD modul pro výpočty dle EN ISO 52 016-1 a vyhlášky 264/2020 Sb.
přepínání mezi moduly HOD => MĚS a MĚS => HOD
26. 1. 2023 | Autor: Ing. Martin Varga
V tomto článku uvádíme návod pro uživatele programu ENERGETIKA "co a jak" při přepínání mezi moduly s rozdílným krokem výpočtu (hodina vs. měsíc). Poslední aktualizace 27.1.2023.
HOD modul - co je v zadání navíc oproti měsíčním modulům
26. 1. 2023 | Autor: Ing. Martin Varga
V tomto článku uvedeme hlavní odlišnosti v zadávání vstupů pro uživatele programu ENERGETIKA v HOD modulu a v MĚS modulu. Aktualizace 27.1.2023.
HOD modul - práce s podrobností dat
26. 1. 2023 | Autor: Ing. Martin Varga
V článku je vysvětlen rozdíl mezi 3-mi hlavními možnotmi jak zadat vstupy v HOD modulu a způsob práce se zadání vstupů. Tyto informace uvítate zejména v případě, pokud budete definovat vlastní vstupy a nevyužijete předdefinované profily, resp. položky v katalozích.
HOD modul - práce při editaci katalogů
26. 1. 2023 | Autor: Ing. Martin Varga
V článku najdete informaci, jakým způsobem lze editovat vlastní položky v katalogu pomocí csv souborů
listopad 2022
Data pro hodinový výpočet
11. 11. 2022 | Autor: Ing. Martin Varga
MPO ČR zveřejnilo hodinová data (vstupy) pro hodinový výpočet pro hodnocení ENB.
říjen 2022
Zadání potřeby TV bazénu v RD
12. 10. 2022 | Autor: Ing. Martin Varga
V tomto článku uvedeme návod, jak zadat potřebu TV pro bazén vč. jeho tepelné ztráty a systém přípravy TV v RD (uvnitř objektu).
Zadání potřeby TV u krytého plaveckého bazénu
12. 10. 2022 | Autor: Ing. Martin Varga
V tomto článku uvedeme návod, jak zadat potřebu TV pro krytý plavecký bazén a systém přípravy TV v plavecké hale.
květen 2022
ENERGETIKA 6.0.8 - změny u TV
10. 5. 2022 | Autor: Ing. Martin Varga
Do programu byla doplněna funkce pro možnost využití teplených ztrát TVsys jako teplených zisků pro výpočet potřeby tepla a chladu. A dále byl přepracován formulář POTŘEBY TV. Pokračuje se zde v katalogizaci vstupních hodnot, dále byla doplněna možnost výběru denního odběrového profilu (už se myslí na nový hodinový výpočet) a také byly doplněny přehlednější grafy.
leden 2022
ENERGETIKA 6.0.7 - nové tabulky a grafy spotřeby pro pomocné spotřebiče
14. 1. 2022 | Autor: Ing. Martin Varga
Do protokolu mezivýsledků byly doplněny nové tabulky a grafy. Rozšiřují přehled informací o hodnocené, ale i o referenčních budovách.
ENERGETIKA 6.0.7 - chlazení pomocí freecoolingu
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byla přímo doplněna možnost volby zadat zdroj chladu jako freecooling.
ENERGETIKA 6.0.7 - měsíční podíly pokrytí
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byly doplněny možnosti zadat podíly pokrytí potřeby tepla na vytápění, chladu na chlazení a potřeby tepla na přípravu teplé vody po měsících.
ENERGETIKA 6.0.7 - výpočet Uem,R pro chladírny a mrazírny
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byly doplněny funkce pro jednodušší postihnutí tohoto typu zóny (chladírna/mrazírna) z pohledu výpočtu referenčního Uem,R a referenčních spotřeb energií.
ENERGETIKA 6.0.7 - protokol ZÁKLADNÍ PŘEHLED - tabulky a grafy nákladů
14. 1. 2022 | Autor: Ing. Martin Varga
Do výsledků, konkrétně do protokolu ZÁKLADNÍ PŘEHLED byly doplněny tabulky a grafy pro podrobný přehled struktury nákladů na energie pro zajištění míst spotřeby hodnocených v rámci ENB.
ENERGETIKA 6.0.7 - nové grafy využití OZE, CHLrc, KVTE el.
14. 1. 2022 | Autor: Ing. Martin Varga
Do protokolu mezivýsledků byly doplněny nové tabulky a grafy. Ty mají za úkol zvýšit přehled o využití OZE, odpadního tepla z chlazení a využití elektřiny z KVET v budově
ENERGETIKA 6.0.7 - nastavení přednosti využití
14. 1. 2022 | Autor: Ing. Martin Varga
Do programu byla doplněna funkce pro uživatelské nastavení přednosti využití elektřiny a tepla z obnovitelných zdrojů energie včetně elektřiny produkované KVET a také využití odpadního tepla ze systému chlazení vnitřních prostor.
prosinec 2021
ENEX + NZÚ
2. 12. 2021 | Autor: Ing. Martin Varga
Článek popisuje postup vkládání hlášenek na ENEX pro účely NZÚ. Poslední aktualizace 10.12.2021.
říjen 2021
Spustili jsme aktualizaci programu NZÚ DEKSOFT pro NZÚ 2021+
21. 10. 2021 | Autor: Ing. Tomáš Kupsa
Spustili jsem aktualizaci našeho programu NZÚ pro tvorbu energetického hodnocení pro dotační program Nová zelené úsporám. V tomto článku představujeme hlavní změny.
září 2021
Nová zelená úsporám - nové výzvy
24. 9. 2021 | Autor: Ing. Martin Varga
Základní obsah nové výzvy v zavedeném programu Nová zelená úsporám (NZÚ). Co je nového a co zůstává?
červenec 2021
Co nového přinesla verze programu ENERGETIKA 6.0.6 ?
29. 7. 2021 | Autor: Ing. Martin Varga
Verze programu ENERGETIKA 6.0.6. přinesla již avizované funkce a něco navíc. Zde si je podrobněji uvedeme.
květen 2021
Nastavení importu gbXML
26. 5. 2021 | Autor: Ing. Jan Stašek
Tento článek shrnuje možnosti nastavení importu gbXML souboru do programu Energetika.
duben 2021
Připojení na webináře - FAQ
7. 4. 2021 | Autor: Ing. Petra Lupíšková, Ing. Jan Stašek, Ing. Tomáš Kupsa
V následujícím článku jsou shrnuty nejčastější dotazy k připojování k webinářům Deksoft.
březen 2021
Co nového přinesla verze programu ENERGETIKA 6.0.5 ?
29. 3. 2021 | Autor: Ing. Martin Varga
Verze programu ENERGETIKA 6.0.5. přinesla již avizované funkce a něco navíc. Zde si je podrobněji uvedeme.
Protokol ZÁKLADNÍ PŘEHLED
29. 3. 2021 | Autor: Ing. Martin Varga
Od verze programu ENERGETIKA 6.0.5 byl ve výsledcích kompletně přepracován doplňující protokol a také změně jeho název na ZÁKLADNÍ PŘEHLED. Níže se podívejme, jaké informace nám poskytne.
Zadání vlastní hodnoty emisivity konstrukce pro výpočet "negativního" sálání
29. 3. 2021 | Autor: Ing. Martin Varga
Ve verzi programu 6.0.5 byla vystavena možnost zadání konkrétní hodnoty emisivity u každé vnější konstrukce (přilehlé k vnějšímu vzduchu). Výpočet dle EN ISO 52016-1 doposud uvažoval pouze paušálních hodnot emisivity resp. už výsledného součinitele přestupu dlouhovlnným sáláním mezi vnějším povrchem konstrukce a oblohou, a to především u nových výplní vede k navýšení potřeby tepla na vytápění. Toto je další možnost jak tuto potřebu snížit.
Za jakých podmínek se podlahová plocha nevytápěného schodiště objeví v energeticky vztažné ploše?
26. 3. 2021 | Autor: Ing. Martin Varga
V ČSN 73 0331-1 jsou uvedeny v příloze D schémata půdorysného začlenění schodiště v rámci bytového domu. Podle tohoto začlenění a vlastnosti, zda-li je prostor schodiště vytápěn či nikoliv je uveden návod, kdy započítat podlahovou plochu schodiště do celkové energeticky vztažné podlahové plochy objektu.
Propojení Energetiky a 3D modelu v programu DesignBuilder - FAQ
19. 3. 2021 | Autor: Ing. Jan Stašek
Tento článek shrnuje nejčastější dotazy k vytváření 3D modelu pro program Energetika prostřednictvím programu DesignBuilder. Poslední aktualizace: 16.5.2021.
Vliv okrajových podmínek na vypočtenou hodnotu infiltrace EN ISO 52016-1
15. 3. 2021 | Autor: Ing. Martin Varga
Tento článek navazuje na již dříve uvedený (odkaz níže), týkající se vlivu voleb v zadání pro výpočet infiltrace na její výpočtovou výši dle EN ISO 52016-1, resp. prováděcí normu pro výpočet větrání EN 16 798-7. Nyní se podrobněji podíváme na jednu vstupní okrajovou podmínku výpočtu - referenční rychlost větru ve výšce 10 m nad zemí.
únor 2021
Rozdíly při stanovení požadavku na součinitel prostupu tepla mezi programy Energetika a Tepelná technika 1D
24. 2. 2021 | Autor: Ing. Jan Stašek, Ing. Martin Varga
Při komplexním posouzení budovy se můžete setkat se situací, kdy dochází k rozdílu mezi požadovanou hodnotou uváděnou v programu Energetika a Tepelná technika 1D. Zjednodušeně lze říci, že v programu Energetika se uplatňují pouze energetické požadavky doplněné o logické limity. Program Tepelná technika 1D stanovuje požadavky přesně dle normy ČSN 73 0540-2. V tomto článku si podrobněji vysvětlíme jednotlivé rozdíly.
Proč je generována výpočtová potřeba tepla na vytápění i v letních měsících?
23. 2. 2021 | Autor: Ing. Martin Varga
Zřídka se na technické podpoře setkáme s upozorňujícím dotazem, že něco musí být špatně v programu, když je uváděna potřeba tepla i v letních měsících. Zvláště, když je obecně zafixováno pravidlo pro ukončení sezóny vytápění při vnější teplotě nad 13°C. V tomto článku vysvětlíme výpočetní princip stanovování potřeby tepla na vytápění a jaké příčinu mohou vést k tomu, že se tak děje. Aktualizace 16.3.2021.
Nejprve se však vypořádáme s těmi "13°C". Tento limit platí obecně pro externí dodavatele tepla (SZT). Tato hraniční teplota vznikla již před poměrně delší dobou. Je to obecný požadavek na dodavatele tepla, že pod tuto hodnotu vnější teploty musí dodávat teplo, je-li potřeba. Proč zrovna těch 13°C? Bylo to statisticky vytvořeno a jedná se prakticky o vnější teplotu, od které směrem výše by měly zajistit v interiéru požadovanou návrhovou teplotu standardní tepelné zisky (osoby, spotřebiče, solární zisky, umělé osvětlení). Bavíme se především o obytných stavbách. Tento limit nemá vůbec nic společného s tím, jaký průběh potřeby tepla vygeneruje měsíční výpočetní postup na základě zadání a ani není touto hodnotou nijak omezován.

Pro starý objekt (vysoké Uem obálky budovy) s vlastním zdrojem tepla bude individuální topná sezóna třeba končit při vyšší vnější teplotě než 13°C (samozřejmě stále pod vnitřní návrhovou teplotou). Naopak u pasivního RD může individuální topná sezóna skončit např. při vnější teplotě i pod 10°C. Na čem to tedy záleží? Jednoznačně vždy na poměru tepelných ztrát a tepelných zisků (plus stupni využití tepelných zisků).

OBECNĚ NĚCO MÁLO K VÝPOČTU POTŘEBY TEPLA NA VYTÁPĚNÍ (S MĚSÍČNÍM KROKEM):

Je to poměrně jednoduché.

Na jedné straně máme tepelné ztráty, které definuje v zadání mnoho věcí, např.:
  • součinitelé prostupu tepla zadávaných konstrukcí
  • plocha konstrukcí
  • výše paušální přirážky na tepelné vazby (nebo podrobně zadaných)
  • objem větrání požadovaného
  • objem větrání v důsledku nekontrolovatelné infiltrace (tomu se podrobně věnoval tento článek)
  • instalace nuceného větrání s rekuperací
  • návrhová teplota v řešeném interiéru (konstantní, přerušované vytápění nebo vytápění s poklesem)
  • průměrné teploty v exteriéru pro každý výpočetní krok
  • zvolené způsoby zadání konstrukcí přilehlých k zemině
  • zvolené způsoby zadání nevytápěných prostor
Výsledné tepelné ztráty prostupem v zóně závisí na tom, jaké vlastnosti a plochy se pro příslušné konstrukce vyskytující se v řešené zóně zadají na formuláři zadání KONSTRUKCE a PLOCHY. Výsledné tepelné ztráty větráním závisí na tom, jaký je požadovaný objem větrání (v profilu užívání), jak vysoká je infiltrace (vstupy na formuláři zadání ZÁKLADNÍ POPIS ZÓNY), jestli je instalováno nucené větrání s rekuperací (formulář VZDUCHOTECHNIKA). Atd.

Na druhé straně máme tepelné zisky, které také definuje v zadání mnoho věcí, např.:
  • solární u výplní (činitel propustnost solárního záření zasklením, vliv pohyblivého zastínění Fsh,gl, vliv zastínění pevnými překážkami Fsh,O, podíl zasklení a neprůsvitných částí výplně, samozřejmě sklon a orientace ke světovým stranám, součinitel prostupu tepla výplně)
  • solární u neprůsvitných konstrukcí (činitel pohltivosti solárního záření, vliv zastínění pevnými překážkami Fsh,O, samozřejmě sklon a orientace ke světovým stranám, součinitel prostupu tepla konstrukce)
  • negativní ztráty (sálání k obloze) u všech konstrukcí (součinitel prostupu tepla, emisivita)
  • počet, typ činnosti a časový průběh vyskytujících se osob v interiéru
  • typ, počet, příkon, účinnost a časový průběh provozovaných spotřebičů v interiéru
  • typ, počet, příkon, účinnost a časový průběh provozovaní umělého osvětlení v interiéru
Tepelné zisky od osob, spotřebičů s sebou nese profil užívání. Tepelné zisky z umělého osvětlení vyplývají z toho, co je zadáno na formuláři UMĚLÉ OSVĚTLENÍ pro danou zónu. Výsledné solární tepelné zisky v zóně závisí na tom, jaké vlastnosti se pro příslušné konstrukce vyskytující se v řešené zóně zadají na formuláři zadání KONSTRUKCE a PLOCHY. Atd.

Prakticky nelze do výpočtu vždy zahrnout 100% tepelných zisků. Využitou výši určuje stupeň využití.  Tento činitel je závislý na poměru ztrát a zisků a na akumulační schopnosti zóny (jinak pracuje s tepelnými zisky zóna s vysokou akumulační schopností a jinak zóna s nízkou).

Primárně ale tento článek nevznikl kvůli teorii, které energetičtí specialisté rozumí a ovládají ji, ale kvůli upozornění na poměrně značný vliv nevhodně zvoleného způsobu zadání konstrukcí přilehlých k nevytápěnému prostoru nebo zemině (viz výše červeně zvýrazněný text). A to může mít právě zásadní vliv na tom, že výpočtově je topná sezóna podstatně delší nebo dokonce nepřerušená celoroční.  U chlazení to analogicky platí v opačném gardu. Takové nevhodné zadání může způsobit vygenerovanou nulovou potřebu chladu na chlazení, ač se tomu můžeme divit stejně jako celoroční potřebě tepla na vytápění.

Výše uvedené se promítá do grafu v protokolu mezivýsledků. Přičemž k jednoznačnému přehledu slouží tyto tři základná grafy:

  • graf tepelný ztrát prostupem a větráním zóny
  • graf jednotlivých typů tepelných zisků zóny
  • graf výsledné potřeby tepla na vytápění a chladu na chlazení zóny
  • čtvrtý graf pro názornost situace deklaruje, kolik ze ztrát připadá na potřebu tepla na vytápění a kolik pokrývají tepelné zisky (tento graf vytvořen jen pro účely tohoto článku, není v protokolu mezivýsledků)
Poznámka: Sloupec vpravo je pro režim vytápění (ten nás v tomto článku zajímá) a vlevo pro režim chlazení.

Typicky předvedeno na příkladech - tepelné ztráty konstrukcí přilehlých k zemině:

RD - kompaktní dvoupodlažní:

RD splňující současný požadavek na novostavby (konstrukce: nízkoenergetický standard, avšak k doporučeným hodnotám pro pasivní RD poměrně daleko). RD je nepodsklepený (podlaha na terénu) bez nevytápěné půdy (podkroví je také obytné). Instalováno nucené větrání s ZZT=85% (jen pro režim vytápění).


Varianta A: Co je důležité zmínit: Podlaha na terénu zadána dle ČSN EN ISO 13 730 ( => měrná tepelná ztráta u konstrukcí k zemině Hg je stanovena VČETNĚ vlivu přilehlé zeminy). Teplota zeminy je dle EN ISO 52 016-1 čl. 6.6.5.1 uvažována průměrná roční).


Podíl celkové roční tepelné ztráty skrz konstrukce k zemině cca 14%.

Varianta B: Co je důležité zmínit: Podlaha na terénu zadána dle ČSN 06 0210 (=> měrná tepelná ztráta konstrukcí k zemině BEZ vlivu přilehlé zeminy). Teplota zeminy zvolena průměrná roční teplota 5°C. Oproti variantě A nárůst potřeby tepla na vytápění skoro na 117% (100% = potřeba tepla varianty A). Prodloužení období výpočtové topné sezóny o měsíc. A to vše bez jakékoliv změnu projektu. Rozdíly jen v přístupu k zadání.


Podíl celkové roční tepelné ztráty skrz konstrukce k zemině cca 23%.

Rozdíly způsobené odlišným přístupem k zadání tepelných ztrát konstrukcí přilehlých k zemině jsou, ale "netrknou" tak do oka, jako v případě objektu s větším poměrem konstrukcí přilehlých k zemině. Tam totiž ten způsob zvoleného zadání konstrukcí přilehlých k zemině má velmi velké dopady do výsledku (samozřejmě v závislosti na součiniteli prostupu tepla těchto konstrukcí přilehlých k zemině). Daleko citelnější je to napří u jednopodlažního RD nebo halových objektů.

RD - jednopodlažní dům:

RD splňující současný požadavek na novostavby (konstrukce: nízkoenergetický standard, avšak k doporučeným hodnotám pro pasivní RD poměrně daleko). RD je nepodsklepený (podlaha na terénu), nevytápěné půda (zadána pro podrobný bilanční výpočet). Instalováno nucené větrání s ZZT=85% (jen pro režim vytápění).


Varianta A: Co je důležité zmínit: Podlaha na terénu zadána dle ČSN EN ISO 13 730 ( => měrná tepelná ztráta u konstrukcí k zemině Hg je stanovena VČETNĚ vlivu přilehlé zeminy). Teplota zeminy je dle EN ISO 52 016-1 čl. 6.6.5.1 uvažována průměrná roční).


Podíl celkové roční tepelné ztráty skrz konstrukce k zemině cca 20%.


Varianta B: Co je důležité zmínit: Podlaha na terénu zadána dle ČSN 06 0210 (=> měrná tepelná ztráta konstrukcí k zemině BEZ vlivu přilehlé zeminy). Teplota zeminy zvolena průměrná roční teplota 5°C. Oproti variantě A nárůst potřeby tepla na vytápění skoro na 134% (100% = potřeba tepla varianty A). Prodloužení období výpočtové topné sezóny v podstatě na celý rok. A to vše bez jakékoliv změnu projektu. Rozdíly jen v přístupu k zadání.


Podíl celkové roční tepelné ztráty skrz konstrukce k zemině cca 34%.