Omezit pro: 
říjen 2020
PENB na ucelené části budovy se společným nevytápěným prostorem - postup práce v programu ENERGETIKA
29. 10. 2020 | Autor: Ing. Martin Varga
V tomto článku podrobně popíšeme, jak postupovat v programu ENERGETIKA při zadání těchto PENB zpracovaných na ucelenou (nadzemní) část budovy v případě, že mají společný nevytápěný prostor (např. garáže).
Strop k půdě - jaké jsou možnosti zadání? Jaké je jeho zastínění Fsh,O?
19. 10. 2020 | Autor: Ing. Martin Varga
Na technické podpoře se množí dotazy, jaké zadat zastínění Fsh,O stropu k půdě pro výpočet solárních zisků, když nad ním je ještě střecha. V článku si vysvětlíme okolnosti, které k takovému dotazu vedou a co s "tím"....nejprve si ale zrekapitulujeme možnosti, jakým způsobem lze nevytápěný prostor půdy postihnout v zadání.
Rozvody tepla a chladu mimo budovu
16. 10. 2020 | Autor: Ing. Martin Varga
V tomto článku popíšeme novou funkci programu ENERGETIKA od verze 6.0.3. - možnost zadání účinnosti rozvodů tepla a chladu mimo budovu do samostatných polí přímo k tomu určených.
září 2020
Váhový činitel a typ regulace u VZT jednotky
24. 9. 2020 | Autor: Ing. Martin Varga
Tento článek má za úkol blíže vysvětlit funkci váhového činitele ve výpočtu spotřeby energie (elektřiny) u VZT jednotek a také vysvětlit jak jej ovlivňuje zvolený typ regulace pohonu ventilátorů VZT jednotky. Aktualizace 27.10.2020.
FAQ - částé dotazy k nové vyhlášce o ENB 264/2020 Sb.
14. 9. 2020 | Autor: Ing. Martin Varga
V tomto průběžně doplňované článku v technické knihovně budeme průběžně uvádět otázky a odpovědi, které se kumulují na naší technické podpoře v souvislosti s požadavky a hodnocením nové vyhlášky o ENB č. 264/2020 Sb.
Formátovací a HTML pole v programech DEKSOFT
7. 9. 2020 | Autor: Ing. Martin Varga
Zde uvedeme pár nutných informací k správnému zadání a zobrazení doplňovaného textu v protokolech.
červenec 2020
Výpočty dle nové vyhlášky
8. 7. 2020 | Autor: Ing. Tomáš Kupsa
Aktualizace: 18.8.2020. Od 5.6.2020 platí nová vyhlášky 264/2020 Sb., o energetické náročnosti budov. Nabývá účinnosti 1.9.2020. Od tohoto data budou muset být všechny průkazy energetické náročnosti budov (dále jen PENB) zpracovány dle této vyhlášky a budou posuzovány na nové požadavky. V reálné praxi však bude potřeba v některých případech PENB dle nové vyhlášky začít zpracovávat již před tímto datem. V tomto článku chceme dát doporučení, jak postupovat, pokud potřebujete již před účinností nové vyhlášky zpracovat PENB dle této nové vyhlášky.
červen 2020
Výpočet systému se současným využitím baterií a akumulace do teplé vody
30. 6. 2020 | Autor: Ing. Jan Stašek
Program FVE nabízí automatické šablony pro nejčastější typy zapojení fotovoltaických systémů. V tomto článku se zaměříme na typ, který není mezi přímo podporovanými systémy, ale je možné jej v programu FVE počítat. Jedná se o systém kombinované akumulace přebytků elektrické energie do baterií a do teplé vody.
Tepelné ztráty zeminou: průměrná roční (EN ISO 52016-1) vs. průměrná měsíční teplota (EN ISO 13 790)
23. 6. 2020 | Autor: Ing. Martin Varga
V souvislosti s výpočtem potřeby tepla a chladu dle EN ISO 52 016-1 došlo v této normě (čl. 6.6.5.1.) ke změně použití teploty pro stanovení tepelných ztrát konstrukcí přilehlých k zemině, pakliže jsou její měrné ztráty stanoveny dle EN ISO 13 370. Má být použita průměrná roční exteriérová teplota místo průměrné měsíční exteriérové teploty jako v případě EN ISO 13 790.
Jaký vliv mají neprůsvitné konstrukce v celkové solární bilanci při výpočtu dle EN ISO 52016-1?
16. 6. 2020 | Autor: Ing. Martin Varga
V tomto článku na konkrétním případě ukážeme jaký vliv na celkové solární bilanci mají neprůsvitné konstrukce.
Vložení omezujících podmínek - výpočet EN ISO 52016-1
16. 6. 2020 | Autor: Ing. Martin Varga
Po prvních zkušenostech "ostrého provozu" s výpočtem potřeby tepla a chladu dle EN ISO 52 016-1 byla u programu ENERGETIKA vystavena verze 5.0.1., ve které byly ve výpočtu doplněny některé omezující podmínky, které mají za cíl usměrnit výpočet v případě méně obvyklých až nestandardních zadání.
Na co v zadání dávat pozor při přepnutí výpočtu z EN ISO 13 790 na EN ISO 52 016-1 a naopak
11. 6. 2020 | Autor: Ing. Martin Varga
V tomto článku upozorníme na odlišnosti v zadání při zvolení výpočtu podle normy EN ISO 13790 a EN ISO 52016-1.
Tepelné ztráty větráním EN ISO 13 790 vs. EN ISO 52 016-1
3. 6. 2020 | Autor: Ing. Martin Varga
Mezi normami došlo k výraznému posunu jak ve výpočtu samotné hodnoty infiltrace, tak ve způsobu zahrnutí infiltrace do výpočtu. Níže v článku názorně a podrobněji probereme, proč a jak se výsledky liší. Citelná odlišnost nastává zejména u přirozeně větraných objektů a to v závislosti na zvolených vstupech do výpočtu výše infiltrace.
květen 2020
EN ISO 52 016-1: přerušované vytápění a chlazení v měsíčním výpočtu
27. 5. 2020 | Autor: Ing. Martin Varga
V SW ENERGETIKA je zapracován od verze 5.0.0 vliv přerušovaného (popř. sníženého) vytápění a chlazení dle normy ČSN EN ISO 52 016-1. Níže v článku popíšeme odlišnosti oproti normě ČSN EN ISO 13 790. Aktualizace 2020.06.12.
EN ISO 52 016-1: solární zisky
27. 5. 2020 | Autor: Ing. Martin Varga
Níže v článku vysvětlíme rozdíly ve výpočtu v SW solárních tepelných zisků dle EN ISO 13790 a EN ISO 52016-1.
EN ISO 52 016-1: infiltrace
27. 5. 2020 | Autor: Ing. Martin Varga
Níže v článku vysvětlíme rozdíly ve výpočtu infiltrace dle EN ISO 13790 a EN ISO 52016-1, resp. EN 16 798-7. SW ENERGETIKA od verze 5.0.0 uvažuje pro stanovení infiltrace při výpočtu dle EN ISO 52016-1 níže uvedený postup. Aktualizace 18.6.2020.
EN ISO 52 016-1: nevytápěné prostory
27. 5. 2020 | Autor: Ing. Martin Varga
V SW ENERGETIKA je od verze 5.0.0 dle normy ČSN EN ISO 52 016-1 jiným způsobem zapracován vliv tepelných zisků v nevytápěných prostorech pro snížení potřeby tepla/zvýšení potřeby chladu k nim přilehlých prostorů s požadovanou teplotou. Níže v článku popíšeme tento přístup.
Nový katalog klimadat
27. 5. 2020 | Autor: Ing. Martin Varga
Od verze programu ENERGETIKA 5.0.0 je doplněn nový katalog klimadat. V článku níže jsou představeny jeho základní nové funkce. Aktualizace 18.6.2020.
Nové funkce na formuláři OZE
27. 5. 2020 | Autor: Ing.Martin Varga
Od verze 5.0.0 programu ENERGETIKA jsou učiněny menší úpravy na formuláři zadání OZE (obnovitelné zdroje energie). Níže si je blíže představíme.
Soubor zadání PENB pro vložení na ENEX
25. 5. 2020 | Autor: Ing. Martin Varga
V souvislosti se změnou zákona 406/2000 Sb. z ledna 2020 a prováděcí vyhlášky 4/2020 Sb. o energetických specialistech vyžaduje nově Státní energetická inspekce (SEI) při vložení hlášenky na ENEX i vložení souboru zadání pro výpočetní program, s nímž byl daný PENB vypočten.
duben 2020
FAQ - často kladené dotazy k NZÚ
17. 4. 2020 | Autor: Ing. Radek Dědina
V tomto průběžně aktualizovaném článku uvádíme často kladené dotazy, se kterými se zpracovatelé NZÚ obrací na naši technickou podporu k programu NZÚ:
PENB na budovu s více ucelenými vytápěnými částmi propojenými prostory bez upravovaného vnitřního prostředí
3. 4. 2020 | Autor: Ing. Martin Varga
V souvislosti se změnou zákona 406/2000 Sb. (dále zákon) platnou od 25.1.2020 došlo k změně definice upravovaného vnitřního prostředí pro účely hodnocení PENB. Níže popíšeme, co to reálně přineslo z hlediska přístupu k zpracování PENB pro tyto typy budov.
březen 2020
REKUPERACE TV - 2.část
25. 3. 2020 | Autor: Ing. Martin Varga
V prvním článku jsme představili novou funkci v programu ENERGETIKA od verze 4.4.2: možnost zadání účinnosti rekuperace (zpětného získávání tepla) z teplé vody. V této druhé části tuto informaci rozvineme z hlediska celkového pohledu hodnocení energetické náročnosti budovy.
Trendy ve výstavbě pasivních domů
19. 3. 2020 | Autor: Ing. Ondřej Židek
Rozhovor s Ondřejem Židkem z GSERVISu na téma trendů v pasivních domech.
leden 2020
Nástavby a přístavby navyšující původní energeticky vztažnou plochu o více jak 25% po 1.1.2020
28. 1. 2020 | Autor: Ing. Martin Varga
V souvislosti se zněním odstavce 3) v §6 vyhlášky o energetické náročnosti budov 78/2013 Sb. v aktuálním znění zpočátku nebyla metodika, jakým způsobem tento požadavek u měněné budovy vlastně prokázat v kontextu toho, jak byl uveden vzor protokolu PENB. Níže v článku popíšeme metodiku prokázání, která se nakonec ustálila, a která je vyžadována. Aktualizace 16.1.2020, 28.1.2020.
listopad 2019
Požadavky na budovy z hlediska ENB po 1.1.2020 - obecné informace
4. 11. 2019 | Autor: Ing. Martin Varga
S blížícím se datem 1.1.2020 narůstá počet dotazů ohledně toho, jaké požadavky musí budovy splnit z hlediska posouzení energetické náročnosti budovy po tomto "magickém datu". Tyto dotazy jsou ještě umocněny obecně známou informací, že je již připraven nový návrh prováděcí vyhlášky o ENB k zákonu 406/2000 Sb., který v současné době také prochází "aktualizací". Zpřísňuje nová vyhláška o ENB požadavky na budovy či nikoliv? Jak to tedy bude po 1.1.2020 a také po platnosti nové vyhlášky po 1.7.2020? (Aktualizace 18.11.2019, 17.1.2020)
říjen 2019
REKUPERACE TV
2. 10. 2019 | Autor: Ing. Martin Varga
V článku níže je uveden popis nové funkce v zadání, která umožní zadat účinnost (%) rekuperace TV. V projekční praxi se s tím potkáváme čím dál častěji, proto byla tato možnost doplněna i do programu.
září 2019
UMĚLÉ OSVĚTLENÍ - přepracovaný formulář zadání
2. 9. 2019 | Autor: Ing.Martin Varga
V tomto článku jsou uvedeny změny, které byly vystaven na formuláři zadání UMĚLÉ OSVĚTLENÍ v programu 4.4.0.
březen 2019
UPOZORNĚNÍ: kompatibilita výpočtu v. 4.3.3 vs. 4.3.4
15. 3. 2019 | Autor: Ing. Martin Varga
Níže v článku je upozornění na nutnost zásahu do zadání pro zajištění kompatibilních výsledků mezi verzí 4.3.3 a 4.3.4.
prosinec 2018
Načtení 2D detailů z programu TT2D do programu ENERGETIKA
5. 12. 2018 | Autor: Ing. Martin Varga
V tomto článku detailněji popíšeme nově doplněnou funkci: Umožnění načítání vypočtených liniových činitelů tepelné vodivosti "psí" 2D detailů z programu TT2D do zadání programu ENERGETIKA.
Vliv instalace FVE na výsledky ENB
3. 12. 2018 | Autor: Ing. Martin Varga
V tomto článku blíže vysvětlíme, jakým způsobem lze postihnout v zadání programu ENERGETIKA instalaci systému FVE a jakým způsobem se jeho vliv projeví na zlepšení výsledku hodnocené budovy.
listopad 2018
TZB - modul TZ: VÝPOČET TEPLOTY VNITŘNÍHO VZDUCHU
2. 11. 2018 | Autor: Ing. Martin Varga
2.11.2018 byla vystavena nová verze programu TZB 3.1.0. S touto verzí programu byla do modulu tepelné ztráty (TZ) doplněna již delší čas avizovaná funkce pro výpočet teploty vnitřního vzduchu místnosti a také funkce pro výpočet tepelných ztrát v závislosti na měnící se exteriérové teplotě. V tomto článku představíme tuto funkci podrobněji.
srpen 2018
Energetický posudek na základě požadavku zákona o ochraně ovzduší
27. 8. 2018 | Autor: Ing. Martin Varga
Po vydání novely č. 369/2016 Sb. původního zákona o ochraně ovzduší č. 201/2012 Sb. je od 1.1.2017 povinnost pro právnickou a fyzickou osobu, je-li to technicky možné, u nových staveb nebo při změnách stávajících staveb využít pro vytápění teplo ze soustavy zásobování tepelnou energií nebo zdroje, který není stacionárním zdrojem. To neplatí, pokud posudek prokáže, že využití tepla ze soustavy zásobování tepelnou energií nebo zdroje energie, který není stacionárním zdrojem, není pro povinnou osobu ekonomicky přijatelné. (Aktualizace 2017-11-10 - změny v aktualizaci vyznačeny modře, Aktualizace 2018-08-27 - změny v aktualizaci vyznačeny zeleně)
červenec 2018
Výpočet negeneruje potřebu chladu - příčiny
16. 7. 2018 | Autor: Ing.Martin Varga
Na technické podpoře k programu ENERGETIKA se poměrně často setkáváme s dotazem na příčinu nulové hodnoty potřeby chladu ve výsledku výpočtu, ačkoliv systémy chlazení byly zadány. Níže v článku si rozebereme jednotlivé možné příčiny.
květen 2018
Zadání tepelných ztrát pro případy s VZT jednotkou
10. 5. 2018 | Autor: Ing. Martin Varga
V tomto článku blíže vysvětlíme na praktických příkladech, jak správně v modulu TEPELNÉ ZTRÁTY programu TZB zadat vstupy pro výpočet tepelných ztrát jednotlivých místností i tepelných ztrát celého objektu v případě, že v objektu je instalováno VZT zařízení. Vzhledem ke snižování ENB jsou tyto případy stále častější.
duben 2018
Redukční faktor "b" při výpočtu potřeby tepla na vytápění část 2
3. 4. 2018 | Autor: Ing. Martin Varga
V tomto článku si vysvětlíme, jakým způsobem se do programu ENERGETIKA zadávají nevytápěné prostory.
Konstrukce přilehlé k zemině - zadání dle ČSN EN ISO 13 370 (1. část)
3. 4. 2018 | Autor: Ing. Martin Varga
V tomto článku obecně popíšeme výpočetní případy dle ČSN EN ISO 13 370 pro konstrukce přilehlé k zemině a princip výpočtu tepelných ztrát, který je odlišný od v minulosti běžně stanovovaných tepelných ztrát pomocí zadání odhadované teploty přilehlé zeminy.
leden 2018
Kdy použít energonositel: Soustava zásobování tepelnou energií
9. 1. 2018 | Autor: Ing. Martin Varga
V tomto článku shrneme zásady pro volbu správného energonositele při zpracování PENB v případě předpokladu, že "jde o dálkové teplo".
Definice budovy s téměř nulovou spotřebou energie
4. 1. 2018 | Autor: Ing. Martin Varga
V červenci 2017 vydala SEI a MPO společné prohlášení k požadavkům na budovu s téměř nulovou spotřebou energie (dále již jen NZEB). Níže zopakujeme, proč bylo toto prohlášení vydáno. Také se podíváme jaké jsou současné požadavky na NZEB a jaký je předpoklad změny těchto požadavků do budoucna.
prosinec 2017
Použití 1/4 hodinových maxim pro výpočet v programu FVE
19. 12. 2017 | Autor: Ing. Jan Stašek
Program FVE provádí výpočet produkce fotovoltaické elektrárny s krokem 10 minut. Je tedy možné pro výpočet použít i detailnější zadání profilu spotřeby elektrické energie než hodinové. Velmi často se setkáváme s dotazem na využití měřených 1/4 hodinových maxim. V tomto článku si ukážeme postup, jak jednoduše vložit měřená 1/4 hodinová maxima do zadání.
Přerušované vytápění a měsíční krok výpočtu dle ČSN EN ISO 13 790: 2009
7. 12. 2017 | Autor: Ing. Martin Varga
Měsíční výpočet "stojí" svou přesností mezi sezónní a jednoduchou hodinovou metodou výpočtu. Otázkou je, zda-li měsíční výpočet svým způsobem zadání a výpočtem dokáže uspokojivě přiblížit realitu pro všechny případy zadání. Níže v článku se pokusíme vysvětlit, kdy měsíční výpočet je možné použít a kdy raději nikoliv i pro vytápění, a kdy bychom měli raději použít hodinový výpočet.
Pro začátek uvedeme, že měsíční výpočet znamená v podstatně samostatný výpočet pro každý měsíc tj. 12x výpočetních kroků za rok na rozdíl od hodinového, kde proběhne 8 760 výpočtů za rok. Patrné také je, že hodinový krok výpočtu nabízí větší přesnost při stanovení spotřeby energií pro všechny místa spotřeby. Zejména je doporučováno použít podrobný hodinový krok výpočtu, je-li v objektu chlazení (důvod popsán zde), úprava vlhkosti vzduchu nebo podrobnější zohlednění spotřeby na umělé osvětlení.




Měsíční výpočet  dle ČSN EN ISO 13 790: 2009 rozeznává několik případů výpočtů podle konfigurace zadání počtu provozních dnů v měsíci a zadaných cílových (požadovaných) teplot v provozních a mimoprovozních hodinách.

1) typ výpočtu interně v rámci DEKSOFT nazvaný typem výpočtu A
Jedná se o případ, kdy všechny dny jsou provozní nebo mimoprovozní a tedy je požadována pouze jedna cílová teplota na vytápění po celý měsíc. Tento typ výpočtu je popsán v normě ČSN EN ISO 13 790: 2009 v čl. 7.2.1 a čl. 13.1 (13.2.1.1). V praxi jde na příklad o profil užívání RD nebo BD, případně vlastní definovaný profil, který splňuje tuto definici. V profilu užívání to potom vypadá takto:








nebo třeba i takto:







2) typ výpočtu interně v rámci DEKSOFT nazvaný typem výpočtu B1
Jedná se o případ, který není typem výpočtu A. Jde o přerušované vytápění nebo chlazení uvažované jako nepřerušované s upravenou hodnotou požadované teploty. Platí pro případy, kdy kolísání požadovaných teplot je < 3K. Výpočtová vnitřní teplota se uvažuje průměrná podle času ze zadaných teplot pro provozní a mimoprovozní dobu. Tento typ výpočtu je popsán v normě ČSN EN ISO 13 790: 2009 v čl. 7.2.1 a čl. 13.1 (13.2.1.2 - případ A - první odrážka). V praxi může profil užívání vypadat třeba takto:







3) typ výpočtu interně v rámci DEKSOFT nazvaný typem výpočtu B2
Jedná se o případ, který není typem výpočtu ani A  ani B1. Jde o přerušované vytápění nebo chlazení uvažované jako nepřerušované s upravenou hodnotou požadované teploty. Platí pro případy, kdy je časová konstanta zóny τ < 0,2 x tmin (tmin = nejkratší období sníženého vytápění, resp. chlazení). Výpočtová vnitřní teplota se uvažuje průměrná podle času ze zadaných teplot pro provozní a mimoprovozní dobu. Tento typ výpočtu je popsán v normě ČSN EN ISO 13 790: 2009 v čl. 7.2.1 a čl.13.1 (13.2.1.2 - případ A - druhá odrážka). V praxi může profil užívání vypadat třeba takto (např. podobně jako výše, jen teplota v mimoprovozní dobu je rozdílná o více než 3 K):






4) typ výpočtu interně v rámci DEKSOFT nazvaný typem výpočtu B3
Jedná se o případ, který není typem výpočtu ani A  ani B1 ani B2. Jde o přerušované vytápění nebo chlazení uvažované jako nepřerušované s upravenou hodnotou požadované teploty. Platí pro případy, kdy je časová konstanta zóny τ > 3,0 x tmax (tmax = nejdelší období sníženého vytápění nebo chlazení). Výpočtová vnitřní teplota se uvažuje jako požadovaná pro provozní dobu. Tento typ výpočtu je popsán v normě ČSN EN ISO 13 790: 2009 v čl. 7.2.1 a čl.13.1 (13.2.1.2 - případ B). V praxi může profil užívání vypadat třeba úplně stejně jako je uveden v předcházejícím případě typu výpočtu B2.

5) typ výpočtu interně v rámci DEKSOFT nazvaný typem výpočtu B4
Jedná se o případ, který není typem výpočtu ani A ani B1 ani B2 ani B3. Jde o všechny ostatní případy přerušovaného vytápění nebo chlazení. Ve výpočtu se použíjí emipirické redukční konstanty a činitelé na základě celkové doby trvání mimoprovozní doby.  Tento typ výpočtu je popsán v normě ČSN EN ISO 13 790: 2009 v čl. 7.2.1 a čl.13.2.21. V praxi může profil užívání vypadat třeba úplně stejně jako je uveden v předcházejících případech typů výpočtu B2 a B3.

O tom, jestli se jedná o výpočet B2, B3 nebo B4 totiž kromě zadaného souvislého počtu mimoprovozních hodin rozhoduje také časová konstanta zóny = tepelná setrvačnost Tau. A je závislá na:

I) akumulační tepelné kapacitě "stavební" hmoty zóny (volíme v zadání od lehké např. dřevostavby až po velmi těžké např.  starší cihelná zástavba)

II) na měrných tepelných ztrátách obalových konstrukcí zóny
(na základě zadaných konstrukcích, jejich ploch a součinitelích prostupu tepla)

V podstatě bychom mohli říci, že Tau představuje časový údaj v [h], za jak dlouho se při přerušení nebo poklesu vytápění "vybije" naakumulovaná energie zóny ve stavebních konstrukcích skrz obalové konstrukce zóny. Podle tohoto kritéria lze usoudit, jak rychle v interiéru poklesne teplota při přerušení vytápění a tedy norma rozhoduje o teplotě (provozní, průměrná), která se použije pro výpočet (typ výpočtu). Dle kalendáře a zadaných cílových teplot v profilu užívání, pokud se nejedná o výpočet A nebo B1) nelze ihned soudit, zda-li typ výpočtu bude B2 nebo B3 nebo B4.


6) typ výpočtu interně v rámci DEKSOFT nazvaný typem výpočtu B4+C
Jedná se o případ kombinace výpočtu B4 a C. Jde o případy, kdy podle zadání v kalendáři jsou mimoprovozní dny nad rámec počtu mimoprovozních dnů během typického týdne užívání, což lze poznat z protokolu mezivýsledků z hodnoty 0 < fH,nocc < 1. Činitel "neobsazeného období" fH,nocc představuje poměr počtu mimoprovozních dní nad rámec typického týdne ku celkovému počtu dní v měsíci.  V těchto případech se tedy část měsíce odpovídající poměru (1-fH,nocc) vypočte podle typu výpočtu B4 a k ní se přičte potřeba vzniklá pro část měsíce odpovídající poměru fH,nocc z typu výpočtu C. Typ výpočtu C je defacto typ výpočtu A popsaného v bodě 1), jen je uvažováno po celý  měsíc s cílovou teplotou zadanou v mimoprovozní dobu. Tento postup je popsán v čl. 13.2.4 normy ČSN EN ISO 13 790: 2009. Nutno poznamenat, že pokud není zadána cílová teplota na vytápění v mimoprovozní dobu, program  za tuto teplotu uvažuje průměrnou exteriérovou teplotu pro  daný měsíc.

Bližší vysvětlení toho, co je mimoprovozní den nad rámec mimoprovozních dnů v rámci typického týdne:
Např.v lednu máme zadány tímto způsobem provozní a mimoprovozní dny. Modře je vyznačen typický týden. V tomto typickém týdnu v tomto měsíci je 5 provozních dní a 2 mimoprovozní dny. Za celý měsíc leden je počet mimoprovozních dnů nad rámec mimoprovozních dnů v typickém týdnu: 5 (den 9.,10.,11., 22. a 25.). Poměr fH,nocc pro tento měsíc  leden by tedy byl 5/31= 0,16129.



Typ výpočtu použitý pro každý měsíc jak pro režim vytápění, tak pro režim chlazení, lze zjistit po provedení výpočtu pro každý typ budovy (hodnocená, referenční) i pro každou zónu z PROTOKOLU MEZIVÝSLEDKŮ. Jednotlivé typy výpočtů jdou také popsány v závěru tohoto protokolu:






JAKÁ JSOU ÚSKALÍ MĚSÍČNÍHO VÝPOČTU?

Teoreticky, jak bylo popsáno výše, nabízí norma výpočetní postup pro všechny možné případy zadání přerušovaného vytápění (pro chlazení to platí obdobně). Je tomu z hlediska výsledků skutečně tak? Z hlediska výpočtové praxe musíme konstatovat, že nikoliv. Poměrně velký problém je, pokud nás podmínky zadání dovedou až k nutnosti využít typ výpočtu B4.

Pro popsání problému nyní musíme uvést dva vzorce z této normy ČSN EN ISO 13 790: 2009 čl. 13.2.2.1. Pro případ B4 se potřeby tepla na vytápění stanoví takto:
QH,nd = aH,red * QH,nd,cont

QH,nd - výsledná potřeba tepla na vytápění pro případ výpočtu B4
QH,nd,cont - potřeba tepla na vytápění pro případ nepřerušovaného vytápění s požadovanou teplotou v provozní dobu, tj. výpočet jako by se jednalo o případ A.
aH,red - bezrozměrný redukční faktor pro přerušované vytápění, reálně se pohybuje v 0 < aH,red < 1,00

aH,red = 1 - bH,red * (TauH,0 / Tau ) * GamaH * (1-fH,hr)

bH,red - empirický korelační faktor, konstanta = 3,00
TauH,0 - referenční časová konstanta zóny pro režim vytápění, pro měsíční výpočtovou metodu = 15,00
Tau - výše popsaná časová konstanta pro režim vytápění pro hodnocenou budovu, resp. zónu
GamaH - bilanční poměr celkových tepelných zisků (QH,gn) a tepelných ztrát (QH,ht) zóny pro daný měsíc viz čl. normy 12.2.1.1
fH,hr - podíl počtu hodin v typickém týdnu s normální požadovanou teplotou pro vytápění (bez snížené hodnoty nebo vypnutí systému vytápění), např. fH,hr = ( (20 - 6) * 5) / (   24 * 7 ) = 0,41666667, dle kalendáře např. pro leden je tento činitel výsledkem tohoto zadání (tento činitel také najdete v protokolu mezivýsledků):



 



Abychom demonstrovali problém výpočtu B4 v "plné nahotě" uvažujme například, že předmětná zóna nemá žádné tepelné zisky (solární, osoby, spotřebiče, umělé osvětlení). Člen Gama,H pak bude = 0. Tzn. že činitel aH,red = 1. Stále však máme přerušované vytápění a ve výsledku máme potřebu tepla jako pro kontinuální nepřerušované vytápění s požadovanou teplotou v provozní dobu!  Tedy velmi chybný výsledek!

Uvažování nulových tepelných zisků v zóně je extrém, v praxi vždy nějaké budou. Jak se výpočet potřeby tepla dle typu výpočtu B4 chová v těchto případech?  Záleží na hodnotě Gama,H, čili poměru tepelných zisků k poměru tepelných ztrát a činiteli fH,hr. Pro vysvětlení se podíváme, jakým způsobem se stanovují tepelné ztráty QH,ht:

QH,ht = QH,tr + QH,ve  (viz čl. 7.2.1.3)
QH,tr - tepelná ztráta prostupem
QH,ve - tepelná ztráta větráním
QH,tr = H,tr * (θint,set,H - θe) * t    (viz čl. 8.2)
QH,ve = H,ve * (θint,set,H - θe) * t    (viz čl. 9.2):
H,tr - měrná tepelná ztráta prostupem
H,tr - měrná tepelná ztráta větráním
t - délka kroku výpočtu, v tomto případě 1 měsíc (údaje udáváme v Wh, resp. kWh = počet dní v měsící *24)
θe -  exteriérová teplota (průměrná měsíční pro daný měsíc)
θint,set,H - požadovaná teplota v zóně pro režim vytápění pro daný měsíc, určená v souladu s čl. 13, tj. v souladu s typem výpočtu - viz body 1) až 6) výše.

Z výše uvedeného vyplývá, že i v případě, pokud máme v zóně tepelné zisky, není poměr Gama,H závislý na konkrétním počtu mimoprovozních hodin, resp. mimoprovozních dní v případě výpočtu B4. Pro jeho stanovení, resp. pro stanovení tepelných ztrát se používá výpočtová teplota v provozní dobu a ta může být velmi vzdálená reálnému průměru za celý měsíc.
Současně z toho také vyplývá, že tento typ výpočtu vůbec nereflektuje na hodnotu zadané požadované teploty na vytápění v mimoprovozní dobu! Výpočtu "je  jedno", jestli v mimoprovozní dobu je zadána teplota 15°C nebo 5°C.  Výsledek to neovlivní a to je velmi špatně (v činiteli fH,hr se to nezohledňuje)! Problém je také zavedení empirické konstanty bh,red = 3,00 do výpočtu typu B4 (z normy není patrné, z čeho vychází, co má zohledňovat a zda-li platí pro všechny případy).

Jeden extrémní příklad za všechny (zadání zóny Z1) v profilu užívání: